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Abstract. We consider the geometric concept of a contravariant connection on a
Poisson manifold. This leads to the operational notion of a contravariant deriva-
tive, previously introduced by I. Vaisman. We sketch several key geometric con-
cepts which should allow one to study both local and global properties of Poisson
manifolds.

1. Introduction

Let M be a Poisson manifold, and suppose we require the existence of a linear affine connec-
tion on M, compatible with the Poisson bracket. Since parallel transport preserves the rank
of the Poisson tensor, we see that the Poisson manifold must be regular in order for such
connection to exist. Therefore, the usual notion of an affine connection is not appropriate
for the study of Poisson manifolds since the most interesting examples of Poisson manifolds
are non-regular. In fact, since for non-regular Poisson manifolds the symplectic foliation is
singular and the dimension of the leaves vary, one can only hope to compare tangent spaces
at different points of the same symplectic leaf.

One possible way around this difficulty would be to use families of connections parame-
terized by the leaves. However, there are examples showing that the symplectic foliation can
be wild, so the space of leaves will not be a nice space, and hence not easy to parameter-
ized. We propose a more efficient and direct approach, through the notion of a contravariant
connection, a concept that mimics the usual notion of a covariant connection, for the case of
Poisson manifolds.

1 This is an original research article and no version has been submitted for publication elsewhere.
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In spite of its formal similarities with covariant geometry, there are striking differences
in this contravariant geometry. For example, the holonomy of a point may be non-trivial,
contravariant derivatives do not have functorial properties (in general, they cannot be pulled
back or pushed forward), etc.

However, just like in ordinary affine geometry, linear contravariant connections are useful
to study geometric properties of Poisson manifolds. Among its applications we mention:

a) Local properties of Poisson manifolds: local equivalence, linearization of Poisson ten-
SOTS;

b) Global properties of Poisson manifolds: Poisson holonomy, Poisson and hamiltonian
symmetric spaces, Poisson cohomology;

¢) Quantization of Poisson manifolds: geometric and deformation quantization;
Some of these applications will be studied in a upcoming paper [4]. In this note we give a
flavor of this new type of geometry. Finally, we also point out that contravariant connections
can also be studied in the more general context of Lie algebroids.

2. Contravariant connections

Suppose we are given a principal bundle over a manifold M:

P e}

|

M

then a covariant connection I' on this principal bundle is defined by a G-invariant horizontal
distribution u — H, in P. Given a connection I', we have its horizontal lift: h(u,v) € T, P is
the horizontal lift of the vector v tangent to M at z, to the point u in the fiber over x. Con-
versely, the horizontal lift & defines the horizontal distribution H, = {h(u,v) : v € TpwM},
so to give h is a completely equivalent way of defining the connection. We shall define a con-
travariant connection on a principal bundle over a Poisson manifold by defining analogously
the horizontal lift of tangent covectors.

To formalize this notion, observe that h is defined precisely for pairs (u,v) in p*T'M, the
pullback bundle by p of the tangent bundle over M. Denote by p : p*T'M — T'M the induced
bundle map so we have the commutative diagram

pTM 27y
P———M

Then we can define a covariant connection to be a bundle map A : p*T'M — TP, such that:
(CI) his G-invariant: h(ua,v) = (R,).h(u,v), for all a € G;

(CII) The following diagram commutes:
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pTM L~ Tp

ﬁl l”*

TM —~TM

Condition (CII) guarantees that h is “horizontal”.
Assume now that M is a Poisson manifold. As is often the case in Poisson geometry, the
cotangent bundle plays the role of the tangent bundle, so we replace in the diagrams above
TM by T*M. Thus we are lead to the notion of a contravariant connection on a Poisson
manifold: this is a bundle map h : p*T*M — TP, such that:

(CI*) h is G-invariant: h(ua, ) = (R,)«h(u, @), for all a € G;

(CII*) The following diagram commutes:

7 lp*

M TTM

(where # : T*M — TM is the bundle map induced by the Poisson tensor II).
Given a point z in M and a covector o € T M, the vector h(u,«) € T, P will be called the
horizontal lift of o to the point u in the fiber over x.
There are two important features that distinguish the contravariant case from the covariant
case:

i) For a contravariant connection, the distribution H, = {h(u,v) : v € TpuM} does not

determine the connection;

ii) Tangent vectors in TP do not split into a sum of horizontal and vertical vectors;
However, we claim that one can still define the analogue of the usual concepts of affine
geometry: parallelism, curvature, holonomy, etc. Here we limit ourselves to explain briefly
how one defines parallel transport (more details will appear in [4]).

3. Parallelism

Parallel displacement of fibers can be defined along curves lying on a symplectic leaf of M.

If v : [0,1] — M is a smooth curve lying on a symplectic leaf S, then ~ is also smooth as
map 7 : [0,1] — S. This follows from the existence of “canonical coordinates” for M as given
by the generalized Darboux’s theorem (see [6], thm. 2.1). Also, by the same theorem, we can
choose (not uniquely) a smooth family ¢ — «(t) € T*M of covectors such that #a(t) = §(t).
Following [1], we shall call the pair (y(t), a(t)) a cotangent curve.

Proposition 3.1. Let (y(t), a(t)) be a cotangent curve. For any ug in P with p(ug) = v(0)
there exists a unique horizontal lift 7 : [0,1] — P, which satisfies the system

A(t) = h(3(t), a(t)),

7(0) = uo.

(3.1)
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Proof. By standard results from the theory of o.d.e.’s with time dependent coefficients, system
(3.1) has a unique maximal solution. We claim that this solution exists for all ¢ € [0, 1].

By local triviality of the bundle we can find a curve 7 : [0,1] — P with 5(0) = ug
and p(y(t)) = v(t). We look for a curve a(t) € G, such that 5(t) = ¥(t)a(t) satisfies (3.1).
Differentiating, we have

(1) = F(t)a(t) +7(t)a(t).

We therefore require a(t) to satisfy the equation

or, equivalently,

F(®a(t)a ' (t) = h(Y(t), a(t) — ¥(B).

The right hand side of this equation belongs to G5(; since

p«(h(3(t), e(t)) = 7(t)) = #alt) - % (Y(8)) = #a(t) —4(t) = 0.

Therefore, there exists some curve A(t) : [0,1] — g such that

F(t)a(t)a™ () = () A(t).

Since the initial value problem

always has a solution, defined wherever A(t) is defined, our claim follows. O

Using the proposition we can define parallel displacement of the fibers along a cotangent
curve (y(t),a(t)) in the usual form: if uy € p~1(7(0)) we define 7(uy) = 7(1), where F(¢) is
the unique horizontal lift of (y(t), a(t)) starting at uy. We obtain a map 7 : p~1(y(0)) —
p (v(1)), which will be called parallel displacement of the fibers along the cotangent curve
(v(t), a(t)). Tt is clear, since horizontal curves are mapped by R, to horizontal curves, that
parallel displacement commutes with the action of G:

ToR,=R,orT. (3.2)

Therefore, parallel displacement is an isomorphism between the fibers.

If z € M lies in the symplectic leaf S, let C(x,S) be the loop space of S at z. Then
for each cotangent loop (7, @), with v € C(z, S), parallel displacement along (v, «) gives a
an isomorphism of the fiber p~!(x) into itself. The set of all such isomorphisms forms the
holonomy group of I, with reference point x, and is denoted ®(z). Similarly, one has the
restricted holonomy group, with reference point z, denoted ®°(x), defined by using cotangent
loops in S which are homotopic to the zero.
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If u € p~*(z) then we can also define the holonomy groups ®(u) and ®°(u). Just as in
the covariant case, ®(u) is the subgroup of G consisting of those elements a € G such that
v and ua can be joined by an horizontal curve. We have that ®(u) is a Lie subgroup of G,
whose connected component of the identity is ®°(u), and we have isomorphisms ®(u) ~ ®(z)
and ®(u)? ~ ®(x)°.

If z,y € M belong to the same symplectic leave then the holonomy groups ®(z) and ®(y)
are isomorphic. This is because if u,v € P are points such that, for some a € G, there exists
an horizontal curve connecting ua and v, then ®(v) = Ad(a™')®(u), so ®(u) and ®(v) are
conjugate in G. However, if z,y € M belong to different leaves the holonomy groups ®(x)
and ®(y) will be, in general, non-isomorphic.

4. Contravariant connections on vector bundles

Let P(M, G) be a principal bundle over a Poisson manifold M with a contravariant connection
I'. Suppose that G acts linearly on a vector space V, so on the associated vector bundle
E(M,V,G, P) we have the notion of parallel displacement of fibers along cotangent curves

(7, @)
Given a section ¢ of E defined along a cotangent curve (7, ), we define the contravariant
derivative D, )¢ by setting:

Disey(t) = lim & [7(0(( + ) — 6((1)] (4.1)

h—0

where 77" 1 p2' (v(t + h)) — p3' (7(t)) denotes parallel transport of the fibers from (¢ + h)
to (t) along the cotangent curve (7, ).

Proposition 4.1. Let ¢ and ¢ be sections of E and f a function on M defined along .
Then

1) D(%Oz) (¢ + q/)) = D('y,oz)(l5 + D(v,a)w;
ii) Diya)(fé) = (f°7)Diad+7(f)(d07);

Proof. i) is obvious from the definition. On the other hand, we have

T (F(y(t+R)d(y(t + b)) = F(y(t+ )76y (¢t + h))),
and ii) follows by the Leibniz rule. O

Now let o € Ty M be a covector and ¢ a cross section of E defined in a neighborhood of z.
The contravariant derivative D,¢ of ¢ in the direction of « is defined as follows: choose a
cotangent curve (y(t),«(t)) defined for ¢ € (—¢,¢), and such that v(0) = z and «(0) = «.
Then we set:

Dot = Diy,)$(0)- (4.2)

It is easy to see that D,¢ is independent of the choice of cotangent curve. Clearly, a cross
section ¢ of E defined on an open set U C M is flat iff Do =0 for all « € T, M, x € M.
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Proposition 4.2. Let o, € T; M, ¢ and 1 cross sections of E defined in a neighborhood
U of x. Then

1) Oé+ﬂ¢ = Daqs + Dﬂd);'

ii) Do(¢+ 1) = Dad + Dat);
iii) Deo¢p = cDyo, for any scalar c;
) D

o(fP) = f(x)Doo + #a(f)d(z), for any function f € C°(U);

Proof. iii) is obvious, while ii) and iv) follow from Proposition 4.1. To prove i) observe that
any section ¢ of F, defined in a open set U, can be identified with a function F : p~'(U) — V
by letting

iv

F(u) =u " ((p(u)), uep (V)

where we view u € P as a linear isomorphism u : V' — p *(u). Then, as in the covariant
case, we find

D,¢ = u(h(u,a) - F).
From this expression for the contravariant derivative, i) follows immediately. O

Now let o € Q(M) be a 1-form and ¢ a section of E. We define the contravariant derivative
D, ¢ to be the section of E given by:

D,¢(z) = D,, . (4.3)

Proposition 4.3. Let o, 3 € QY(M), ¢ and ¢ cross sections of E, and f € C®°(M). Then
1) Doypp = Do + Do,
ii) Da(¢ +9) = Dot + Dath;
iii) Dfa¢p = fDag;
iv) Do(f) = fDad + #a(f)d;

Proof. From Proposition 4.2 we obtain immediately that i)-iv) hold. O

Conversely, one can show that every such operator is induced by a contravariant connection
on E (details in [4]).

In [8] Vaisman introduces the notion of contravariant derivative using i)-iv) as axioms.

A linear contravariant connection is a contravariant connection on the coframe bundle
P = F*(M) over M, so G = GL(n) where n = dim M. For the associated bundle T*(M)
we get a contravariant derivative operator D which to a pair of 1-forms a and (3 associates
a another 1-form D,[3. In this case, one defines the torsion tensor field T and the curvature
tensor field R, respectively, to be the tensor fields of types (2,1) and (3,1) given by

T(aaﬂ) = Dof} — Dﬂa - [aa ﬂ], (44)
R(av /6)7 = DaDﬂ/Y - DﬂDa’Y - D[a,ﬂ]’% (45)

for any 1-forms «, 8,7 € Q(M).
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5. Geodesics

Because, for contravariant connections, parallel transport can only be defined along curves
lying in symplectic leaves of M, the same restriction applies to geodesics:

Definition 5.1. Let M be a Poisson manifold with a linear contravariant connection. A
cotangent curve (y(t),a(t)) on M is called a geodesic if:

(Da)y = 0. (5.1)

Let (2!, .. .,2"™) be local coordinates on a neighborhood U in M. Then one defines Christoffel
symbols I'Y for a linear contravariant connection by the usual formula

Dggida? = T da*. (5.2)

In local coordinates, a curve (y(t), a(t)) = (z'(t), ..., 2"(t), a1(t),- .., a,(t)) is a geodesic iff
it satisfies the following system of ode’s

W) — rii(gl(8),. .., 2™(E))ey(t),

dt
(i=1,...,n) (5.3)
da; ik
W= T ), 2 ()agos.
where II =37, _ i (%, A % is the Poisson tensor. From this we have:

Proposition 5.2. Let M be a Poisson manifold, with a contravariant connection I', and
p € M. Given o, € Ty M, there is a unique mazimal geodesic t — (v(t), a(t)), starting at
p € M, with a(0) = .

Proof. Choose a systems of coordinates (z!,...,z") centered at p. By standard uniqueness
and existence results for ode’s, system (5.3) has a unique solution with initial condition
(z(0),...,2™(0),a1(0),...,a,(0)) = (0,...,0,p1, ..., Q). O

The geodesic given by this proposition is called the geodesic through p with tangent covector
a,. Note that if S is the symplectic leave through p and v € T, M is a tangent vector, there
can be several geodesics with this tangent vector at p.

The following result is the analogue of a well known result in affine geometry:

Proposition 5.3. Let I' be a linear contravariant connection on M. There exists a unique
contravariant connection on M with the same geodesics and zero torsion.

Proof. Choose local coordinates on M so D has symbols sz , and consider the set of functions

1
2

*Tij ij i, oY
i = (r,g + T+ axk) (5.4)
One checks that this indeed gives a well defined contravariant connection D* on M, by a
standard argument involving change of coordinates. From expressions (4.4) and (5.3) for the

torsion and the geodesics, we see that D* has zero torsion and the same geodesics as D.
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For uniqueness, let D and D* be two connections with the same geodesics and torsion 0.
We let

S(e, 8) = Doff — D38, B € Q'(M). (5.5)
Then S is C'*°-linear, so it is a tensor. Since the connections have 0 torsion, we have:
S(a, B) = S(B,a) = (Do — Dga) — (D3 — Dja) (5.6)
= [aaﬂ] - [Oé,ﬂ] =0.

so S is a symmetric tensor. Now if oy, € T M, we can choose the geodesic (for D and D*)
with tangent covector ,, and associated 1-form « along y. We have

S(a,a) = Dya— Dia =0, (5.7)
so S=0and D = D*. O

6. Relationship to ordinary connections

Let M be a symplectic manifold and I a contravariant connection on P (M, G) with horizontal
lift h : T*M — TP. Then we have a bundle map A : p*IT'M — TP defined by

h(u,v) = h(u,# 'v),  (u,v) €p'TM.

This map is obviously G-invariant and makes the following diagram commute

pTM - 7p
. b

TM —~TM

It follows that A is the horizontal lift of a covariant connection on M. This construction
shows that there are always contravariant connections on any principal bundle P(M,G) over
a Poisson manifold M. In the case of linear connections the contravariant and covariant
derivatives are related by:

Do = Vaa.

For a general Poisson manifold with a contravariant connection I' on P(M,G) and hori-
zontal lift A : T*M — TP, we say that I' is induced by a covariant connection if

h(u, @) = h(u,#a),  (u,a) € p'T"M,

where h : p*T M — TP is the horizontal lift of some covariant connection on M. Note that
in this case the lift h satisfies:

#a=0 = h(u,a)=0, (u, ) € p*T* M. (6.1)
In the case of a linear contravariant connection, this condition says

#a=0 = D,=0, ae Q' (M). (6.2)
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Definition 6.1. A contravariant connection I' on a principal bundle P(M,G) is called a
F-connection if its horizontal lift satisfies condition (6.1).

Assume we have a contravariant F connection I' on P(M,G). If i : S — M is a symplectic
leave, then on the pull-back bundle p : :*P — M we have an induced connection I's: on the
total space i*P = {(y,u) € S x P :i(y) = p(u)} we define the horizontal lift hg : p§T*S —
T(i*P) by setting

hs((s,u), @) = (p«h(u, ), h(u, B)), (s,u) € i*P, (u, ) € p*T* M, (6.3)

where (3 € T{Es)M is such that (dsi)* = «, and we are considering the canonical identification
T(*P) = {(v,w) € TS X TP :v =paw}. If (dsi)*3 = (dsi)*3, then #3' = #[, so we get
the same result in (6.3) and so I' is well defined. S being symplectic, the connection I'g
is induced by a covariant connection on ¢*P. It follows that a contravariant F-connection
in P can be thought of as a family of ordinary connections over the symplectic leaves of
M. In fact, it is easy to see that contravariant F-connections can be defined in terms of an
horizontal, G-invariant, (generalized) distribution in P, which projects to the leaves of M,
i. e., they are just partial connections along the leaves.

For a F-connection, horizontal lifts of cotangent curves (7, @) depend only on 7. There-
fore, one has a well determined notion of horizontal lift of a curve lying on a symplectic
leaf. It follows that for these connections, parallel displacement can also be defined by first
reducing to the pull-back bundle over a symplectic leaf and then parallel displace the fibers.
Hence, the holonomy groups ®(z) and ®°(z) coincide with the usual holonomy groups of the
pull-back connection on the symplectic leaf S through x. From this one obtains an analogue
of the holonomy theorem (see [3]), which we state here only for linear connections:

Theorem 6.2. (Holonomy Theorem) Let I' be a linear contravariant F-connection. The
Lie algebra of the holonomy group ®(x) C GL(n,R) is the ideal of gl(n,R) spanned by all
elements of the form R(a, )., where a, 3 € Q(M).

A natural question is whether or not this result holds for general contravariant connections.

We finish with a natural example of a contravariant connection which is not an F-connection.

Example 6.3. Recall that a Poisson Lie group is a Lie group GG with a Poisson bracket such
that the group product G x G — G is a Poisson map (see [7] a discussion of Poisson Lie
groups). A theorem of A. Weinstein [5] and M. Karasev [2] states that the left invariant 1-
forms O}, (G) on a Poisson Lie group form a subalgebra of Q'(G) with respect to the bracket
[, ] on 1-forms. Therefore, we can define a linear contravariant connection in G by setting

Daf =Gl Bl, .8 € 0h(G)

This connection is the analogue of the natural left invariant, torsion free, covariant connection,
on a Lie group. In fact, this connection has zero torsion and its curvature is parallel:

T(«a, 8) =0, D,R(«a, 3) = 0.



108 Rui Loja Fernandes: Contravariant Connections on Poisson Manifolds

However, in general, this connection is not left invariant. This is because, in general (if the
Poisson tensor is not trivial), left multiplication in G is not a Poisson map. For the same
reason, in general, we have Dm # 0.

To see that these connections are not, in general, F-connections, we consider a simple
example. Let G = (R?, +) with coordinates (r,%y) and bracket

{z,y} =2

Then G is a Poisson-Lie group, and for the natural connection in G we have:
1
Dgydx = Dyydy = 0, Dyg,dy = §d:c = —Dyydz.

Note that the Poisson tensor vanishes at the origin, but there are contravariant derivatives
which do not vanish at the origin, so D is not a F-connection.

This example also suggests that one should study Poisson (locally) symmetric spaces,
i. e., Poisson manifolds with a linear contravariant connection such that

T=0 and DR =0.

We refer the reader to [4].
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