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1. Introduction

Let ¢ : M™ — M™ be an isometric immersion of a Riemannian n-manifold M into a Kaehler
manifold M of complex dimension m. The submanifold M is called totally real (or isotropic
in symplectic geometry) if the almost complex structure J of M carries each tangent space
of M into its corresponding normal space. A totally real submanifold M of M is said to be
Lagrangian if n = m.

Lagrangian submanifolds in Kaehler manifolds have been classically studied from a sym-
plectic point of view and are of a great interest in Physics. From a Riemannian point of
view, Lagrangian submanifolds are far from trivial. This paper is devoted to the family of
Lagrangian surfaces in complex Euclidean plane, although most of the results in Section 2
are true in arbitrary dimension. Using several joint results of the author with F.Urbano, we
first introduce in Section 2 the Lagrangian version of geometric notions like umbilicity or
constant mean curvature, both concepts classically studied in any kind of submanifolds. In
addition, we pay our attention to the minimal case and the well known Willmore problem in
the Lagrangian setting.

In this way, two very regular examples of Lagrangian surfaces appear in this context:
the Whitney sphere and the Lagrangian catenoid. Thanks to different local and global
characterizations described in Section 2, we can say that they play the role of the round
sphere and the classical catenoid in Euclidean 3-space. It is specially important for us that
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both examples can be considered, in a certain sense explained in detail in Section 3, as
(Lagrangian) surfaces of revolution.

The aim of this article is then a new characterization of the Lagrangian catenoid. It is a
well known fact that the catenoid is the only minimal surface of revolution in R®. This result
(in the above formulation) was proved by J.B. Meusnier in 1785 (cf. [M]). In Theorem 6, we
conclude the Lagrangian version of the above classical theorem.

2. Characterizations of the Whitney sphere and the Lagrangian catenoid

Let ¢ : £ — C? be an immersion of a orientable surface into complex Euclidean plane
endowed with Euclidean metric (,). The most important two classes of this kind of surfaces
are the Lagrangian (or totally real) surfaces and the complex surfaces. ¢ is called Lagrangian
(resp. compler) if the complex structure J of C? carries each tangent plane to X into its
corresponding normal plane (resp. into itself).

In this article we are interested in Lagrangian surfaces and the basic properties of this
family are:
(i) The trilinear form C associated to the second fundamental form o

Cv,w,u) = (o(v,w), Ju)

is totally symmetric.

(ii) If H denotes the mean curvature vector of ¢, the 1-form ay = (JH,—) dual to the
tangent vector field JH, usually known as the Maslov form, is closed.

The simplest examples of Lagrangian surfaces in C? are the Lagrangian planes, which are
of course the totally geodesic ones. If we look for totally umbilical surfaces, i.e. o(v,w) =
(v,w)H, the above property (i) easily leads to the totally geodesic case. In this way, it
is natural to ask for a Lagrangian version of umbilicity that provides non-trivial examples.
Taking (i) into account, in the following result the easiest examples — from the point of view
of the second fundamental form— are locally characterised.

Theorem 1. [CU1|, [RU] Let ¢ : ¥ — C? be a Lagrangian immersion. The second funda-
mental form of ¢ is given by
1
o(v,w) = 3 ((v,w)H + (H, Jw)Jv + (H, Jv)Jw)
for any tangent vectors v, w, if and only if either ¢ is totally geodesic or ¢(X) is an open set
in a Whitney sphere.
The Whitney spheres are an important family of genus zero Lagrangian surfaces that, up to

translations and dilations in C?, can be described by the Whitney immersion

1§ — C? =— . 1
w 3 w('xlax%m?’) 1 +IL'§ (xlax2) ( )
By an interpolation argument, we conclude from Theorem 1 the following corollary which

shows that the Whitney spheres play the role of the umbilical spheres in Euclidean 3-space R®.
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Corollary 1. [CU1] Let ¢ : ¥ — C? be a Lagrangian immersion of an orientable surface.
Then 2K < |H|?* and the equality holds if and only if ¢(X) is an open set in a (Lagrangian)
plane or in the Whitney sphere.

It is often that totally umbilical surfaces are the simplest examples of constant mean cur-
vature in a given target manifold. But Whitney spheres have no parallel mean curvature
vector, property that is usually taken as the version in higher codimension of constant mean
curvature. However, the Maslov form ay is conformal for the Whitney sphere (that is, JH is
a conformal vector field). We can show that this property is a good version of constant mean
curvature in the Lagrangian setting, thanks to the following theorem that can be considered
as the Lagrangian version of a famous Hopf’s theorem.

Theorem 2. [CU1]| The only genus zero Lagrangian surface in C? with conformal Maslov
form is the Whitney sphere.

On the other hand, the Willmore functional for a surface in Euclidean space, ¢ : & — R*,
is defined by

W(o) = [ |HdA.

This functional has been studied by several authors (we refer to [W]) and the critical points
of W, known as Willmore surfaces, are of special interest.

In this context we are also able to obtain new global characterizations of the Whitney
sphere as an absolute minimum for this functional in the Lagrangian context.

Theorem 3. [CU1|, [CU4] Let ¢ : S* — C? be a Lagrangian immersion of a (topological)
sphere in C2. Then
W(¢) > 8

and the Whitney sphere is the only one that reaches the equality.
In addition, the Whitney sphere is the only Lagrangian Willmore sphere in C2.

If we think about the minimal case, that is H = 0, we must point out that B.Y. Chen and
J.M. Morvan proved in 1987 (cf. [CM]) that an orientable minimal surface ¥ in C? = R* is
Lagrangian with respect to an orthogonal almost complex structure on R* if and only if it
is complex with respect to some other orthogonal almost complex structure on R*. In this
context, we pay our attention to the following example:

1
My = {(z, ;) €C?: z€CY,

described by D. Hoffman and R. Osserman in [HO] where they show that M, is a minimal sur-
face in R* with finite total curvature —4x. Later, in their classical paper about calibrations,
R. Harvey and H.B. Lawson give a different description of M; in the following way:

Mo ={(z,y) € C* =R’ xR? : [z]y = |y|z; 2|z||ly| = 1}

and state that it is an area-minimizing minimal surface invariant under the diagonal action
of SO(2).

Our contribution for this example is the following local characterization that allow us to
refer M, as the Lagrangian catenoid.
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Theorem 4. [CU3| Let ¢ : ¥ — C? be a minimal (non-flat) Lagrangian immersion. Then
Y is foliated by pieces of circles of C* if and only if (%) is (up to dilations) an open subset
of the Lagrangian catenoid.

We can ask if some relation exists between the Whitney sphere and the Lagrangian catenoid.
There is an affirmative answer. If we consider the inversion of C? from the only double point
of the Whitney sphere (the origin in the representation of (1)) given by

p

F:C— {0} — C*— {0}, Fp) = e

it happens that F(My) = w(S?) — {0}, that is, the Whitney sphere is the compactification
by the inversion of the Lagrangian catenoid. Precisely, in this direction we characterize the
Lagrangian catenoid globally.

Theorem 5. [CU4| Let M? be a complete minimal (non-flat) surface with finite total cur-
vature immersed in Buclidean space R*.

The compactification by the inversion of M? is Lagrangian for a certain orthogonal com-
plex structure on R* if and only if M is (up to dilations) the Lagrangian catenoid.

3. The Lagrangian catenoid as a surface of revolution

In the latter section, we have shown that the Whitney sphere and the Lagrangian catenoid
are both regular examples of Lagrangian surfaces of C?, thanks to their geometric properties
that characterize them, locally and globally, inside different families of Lagrangian surfaces.

We now describe explicit parametrizations of both examples in terms of a plane curve.
We follow a particular case of a construction introduced in [CU2], that admits a general
version for arbitrary dimension in [RU].

Given a regular plane curve o : I C R — C*, we consider the map
0o I xR — C?

given by
olt,s) = — e, 7).
Yalt, s) \/5( )

We can call ¢, the Lagrangian surface of revolution generated by o because of the fol-
lowing two reasons:
1. The curve s +— %(e”, e %) can be interpretated as a horizontal lift to S® of a great
circle of S? via the Hopf fibration I : S* — S§? (see [CU2]). In particular, ¢, is always
a Lagrangian immersion.

2. Besides ¢, is constructed using a generatriz plane curve «, ¢, is invariant by the one-
parameter group of holomorphic isometries of C? given by {diag(e?’,e""); § € R} C
SU(2).
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Remark 1. Any Lagrangian surface of revolution in C? is H-umbilical in the sense of [Ch].
In fact, up to a change of coordinates in C?, ¢, can be written as a(t)(cos s, sin s), and so
©a can be seen as the complex extensor of o via the inclussion S* < R?. In other words, ¢,
is the easiest possible construction described in Definition 1 of [RU] taking n = 2 and ¢ the
totally geodesic immersion of S! in CP! = S2. We must point out that if one consider the
similar construction for n > 2, one loses the desired property commented above in 2.

It is straightforward to check (or see Lemma 1 of [CU2] or Proposition 3 in [RU]) that
the fundamental forms of the Lagrangian immersion ¢, : I x R — C? are given by:

(,) = |a'Pdt* + |af?ds”, (2)
C(at7at78t) = < > = |al|3kaa
(815;8757 ) = (8878578 ) (3)

(ata 85, 65) = <Oé ) Ja>a

where J also denotes the complex structure in C (i.e. the rotation of angle +7/2) and k, is
the signed curvature of a.

We remark that, up to congruences in C?, ¢, is well defined up to rotations or dilations
of o (but not up to translations of «).

Now we can see the Whitney sphere and the Lagrangian catenoid as the Lagrangian
surfaces of revolution generated by the lemniscata (in polar coordinates, r? = cos 26) and the
equilateral hyperbola (in polar cordinates, r* cos 20 = 1) respectively.

3.1. The Whitney sphere
We take o
alt) = cosht + ¢sinht
cosh 2t
and then ¢, = p,(z =t +is), z € C, is a conformal Lagrangian immersion which is singly-
periodic. Via the exponential map £ = e : C — C*, we can see

,tER,

Ya:C*CC— C?
given by , ,
(€ +1) +i(lglF -1) . ~
g oY

and it admits a regular extension to 0 and oo corresponding to the poles of S?. Via the
inverse of stereographic projection, C — S?, we finally arrive at (1).

va(§) =

3.2. The Lagrangian catenoid

We now take the inverse of the lemniscata from the origin, that is,

a(t) = cosht +isinht, t € R,
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obtaining in this way a conformal Lagrangian immersion
1 . .
valt,s) = E(cosht + isinht)(e”, e™).

Up to congruences in C?, we can rewrite ¢, as
and then it is clear that we can conclude that

va(R x ST = M.

4. A new characterization of the Lagrangian catenoid

In this section we are going to prove the main theorem of this article. For this purpose, we
look for minimal Lagrangian surfaces of revolution in C2,

If we consider the orthonormal basis (see (2)) given by {0;/|c/], 0s/|c|}, it is easy to get
from (3) the mean curvature vector of ¢,:

]' 2 n ! 12 !
H = W(W (", Jo') + [/ X, Ja)) I (pa)s- (4)
There is no restriction if we suppose that « is parametrized in such a way that |o/| = |«/,

which implies that ¢, is, in addition, a conformal immersion. Then, from (4), the minimality
of ¢, is equivalent to
(", Ja'y + (', Ja) = 0. (5)

If we put o = aa+bJa, witha = <‘°‘O’l’|§‘> = (log |a]) and b = <0“’C’Y‘|]20‘), then an easy computation
leads to a® + b?> = 1 and

a =b(b—kylaf), b =—a(b—kyla|); (6)

moreover, we can write a(t) = |a(t)|eiftb.
Then from (5) we deduce that |o|k, + b =0, and so (6) becomes in a' = 2b%, Y/ = —2ab.
Thus
a =2(1-a?%), b = —2ab. (7)

The trivial solution of (7), a = +1, b = 0, leads to a straight line o passing through the origin
and then ¢, would be a Lagrangian plane. The non-trivial solution of (7), a(t) = tanh 2t¢,
b(t) = +1/cosh2t, after an easy computation, gives «(t) = cosht + isinh¢, which is the
equilateral hyperbola generatrix of the Lagrangian catenoid.

As a summary, we have proved the following new local characterization of the Lagrangian
catenoid.

Theorem 6. The only minimal (non-flat) Lagrangian surface of revolution in C? is (an open
subset of ) the Lagrangian catenoid.
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