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Abstract. A Carnot group G is a simply connected graded nilpotent Lie group
endowed a left-invariant distribution generating the Lie algebra g of G. Here we
show that the quotient manifold of a filiform Carnot group by the subgroup gen-
erated by its characteristic line field is projectively abelian. The result is used to
show how a class of bilinear control systems have an intrinsic linear behavior.

1. Introduction and motivation

The kinematic model of an n-trailer i.e. a car-like vehicle pulling an arbitrary number of
trailers is a typical example of a control system evolving on the mixed bundle as the vector
fields corresponding to the control inputs of the system coexist with one forms corresponding
to nonholonomic constraints that describe the assumption of rolling without slipping of the
wheels, see [2, 12]. Systems like the n-trailer can be thought of as rank 2 distributions in
n-dimensional space. Assume that the n-dimensional configuration space of the system is a
smooth manifold M and that the two inputs of the system take values in the space U(R) of
smooth functions over R. Such a system is controllable and its Lie algebra is solvable. In [7] it
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was shown that it is also differentially flat, in the language of differential algebra [11]. Roughly
speaking, a differentially flat system is “equivalent” to a linear system. Understanding this
equivalence is the scope of this paper. Using the Lie-Palais theorem, we consider the Lie
group of diffeomorphisms generated by the flows of the distribution and construct on it a
suitable homogeneous space. The system induced on this homogeneous space is linear and
the corresponding projection can be thought of as time elimination.

2. Chained form and rank 2 sub-Riemannian structures

In order to characterize the algebraic properties of a system which is differentially flat it is
convenient to transform it into a form in which it looks simpler although not linear. The
canonical form used for rank 2 distributions in n-dimensional space is a bilinear form called
chained form [14]

i‘l = U

j?Q = U9

Ty = TUy (1)
Ty = Ip-_1U1.

The distribution generated by the two input vector fields is then

([ 1] [o])

0 1
D = span < |, | O]},
(L In-1 ] _O_/

It is possible to calculate explicitly the diffeomorphic transformation that, together with a
static invertible change of feedback, transforms the n-trailer system mentioned above into
(1), see [15].

The chained form can be considered as a sub-Riemannian structure i.e. as a triple

(M7 D, <'7 )) (2)

where M is a smooth n-dimensional manifold, D is a rank 2 left-invariant distribution on
M (generating the Lie algebra g of M) and (-, -) is an inner product on D inducing a left-
invariant Riemannian metric on g. We consider here only regular points in p € M i.e. such
that the growth vector is constant in a neighborhood of p and the minimal growth vector
case. This is equivalent to say that there exists a canonical flag of distributions

DcD*cD'c...cD" (3)
having at p growth vector

np, D) ={2,3,4...n—1, n}.
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The filtration of D! is calculated as

DH—I — Dz+ [D, Dz]
D? = D.

A Lie algebra with such a structure is n — 1 step graded nilpotent and is called filiform
Lie algebra in [8]. It can also be characterized by its lower (or descending) central series:

913933943"'Dgn39n+1:0 (4)
where
g = 9
g = [g, 9]
gir1 = (8,8 1=3,4,...n

and the position of subindex 2 is intentionally left empty as will be clarified below. The
unconventional notation for the descending central series is meant to help keeping track of
the dimensions of the corresponding subspaces. Since the level of bracketing needed to span
the whole tangent space is maximal for given n, the minimal growth vector case can be
intended as the mazimal nonabelian situation one can encounter [1].

Such a sub-Riemannian system represents an higher order contact manifold and has been
studied in different contexts leading to canonical structures that are called Goursat normal
form [3] in the theory of exterior differential system or to their dual, the above described
chained forms in the control theory literature. Classification results for these systems are
reported in [5, 18].

A graded nilpotent Lie algebra admits as a vector space the following decomposition:

g=VoloV,d..0V,
where the generating subspace V' is equipped with the operation:
[V Vil = Vi

The V; can be expressed as V; = D*(p) /D' (p).

2.1. Characteristic line field

A system in Goursat normal form admits a line distribution [4]. Similarly to the Engel case,
[13], for filiform distributions at a regular point p we can consider the map

¢ : D) — gy, 9])
v adv\[g’g].

Such map is onto but not 1-1; ker(¢) = {v € D | ad,& = 0 V& € [g, g]} gives a one-dimensional
subspace at each point p. Call gy the (n — 1)-dimensional union of ker(y) and [g, g] at g.
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Its complementary subspace is called the characteristic line field L C D of the graded sub-
Riemannian structure and it is defined up to a group automorphism. Such a construction
will be clear once we have introduced a matrix representation of g. In other words, we can
prolong the flag (4) of a extra element g, of dimension n — 1

g1 209220932 ... @Un

such that, together with the generating condition D @ g3 = g we have also the other semi-
direct sum L @, go = g (the function 7 is given below). If we take a basis {ej, e, ...€,}
that respects the gradings i.e. V; = span{e;} 7 > 3 and D = span {e;, e}, then we have
that [er, e;] = ke, @ = 2,3,...n. Asthe g, = V;® ... ®V,, are all ideals, the basis
{e1, €2, ...e,} is a strong Malcev basis.

3. A unipotent matrix Lie group for the minimal growth vector case

By the Lie-Palais theorem, the Lie algebra g gives the infinitesimal generators of a Lie group
G. Such a group has to be also graded nilpotent. By Ado’s theorem there exists a faithful
unipotent representation n : G — GL(W) (over the field R) which is a linear algebraic
group. The reason for looking for a linear group is obviously that the exponential map g — G
becomes the ordinary exponential and the adjoint map becomes the similarity transformation
A — gAg™!, A € gand g € G. A matrix unipotent representation of this abstract group
was introduced recently in the control community by H. Struemper [16]*.
X € G has the following structure:

[ 1 2o 3 =

4 Ts Tn
2 3 n—2
i T |
0 1 = 5 3 n—2)!
2
a3 :
1 I B : ,
3 n
X = 1 2 2 , o x= (1, Ta ..., Ty) ENR
2
=3
1 2
: R
0 .0 1 |

and a basis of a left-invariant representation of its Lie algebra g is:

[0 0 0 0 01 0 ... 0]

0 1 .0 0 0 ... 0

A= . 0|, Ay = :
1 0

| 0 0 | | 0 0 |

!Struemper “baptized” it SUP(n) the Special Unipotent group of dimension n. Notice that such a group
is well-known in representation theory of nilpotent Lie groups. In [6] it is called just K,. Here, following
Gromov [9] we call it a Carnot group.
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00 1 0 00 0
0 0 0 0 0
Ay = : oy Ay =
0
| 0 0 | 0
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For n = 3, this group coincides with the Heisenberg group.

The main feature of G is that only n—2 brackets are different form 0, i.e. only the minimal
number required to satisfy the Raschevskii-Chow theorem. The matrix commutators are in
fact

[Al, Az] == AlAz - AzAl - —AzAl - (—1)i_1 AQAZi_l == (—1)i_1 Ai—|—1-

As in all nilpotent graded Lie algebras, the bracket reduces to a (noncommutative, nonas-
sociative) multiplication. Moreover, we have that the only nonnull structure constants give
exactly (up to the sign) the remaining basis elements of g.

If g is nilpotent, the exponential map exp : g — G is a global diffeomorphism and both
the canonical coordinates of the first kind

(t1, ... ty) —~exp(tier + ... +then)
and the canonical coordinates of the second kind

(t1, ... ty) > exp(tie1)...exp(t, e,)

define global diffeomorphisms.
A control system with the filiform sub-Riemannian structure (2) has the following left-
invariant representation on the group G:

X = X (w1 Ay +updy) X e (5)

where the parameters u; € R are called control inputs.

Considering the system (5) in the strong Malcev basis given by the canonical coordi-
nates of the second kind and applying the Wei-Norman formula to the resulting product of
exponentials [17], we obtain the chained form (1).

4. Semidirect sum in g

The series (4) is a succession of central extensions of abelian Lie algebras i.e. Z (g/giy,) =
9i/8ir1 @ > 2. The same consideration holds also for go so that all the terms g;, 7 =
2,3,...,n are nilpotent ideals. Moreover, since A;A; = 0 V 4, j > 1, they are abelian
tdeals and go, the maximal abelian ideal of g, has codimension 1. The characteristic line
field £ is generated by A;: £ = span{A;} and looking at the brackets, we have that the
homomorphism

7w : L — Derggo (6)

of the semidirect sum g = £ @, go is a matrix multiplication which gives a “shift” in the A;
(up to sign):
™ (A1) (Ai) = (-1) Aipa.
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Correspondingly, it is possible to define a lower central series also on the group GG and a
semidirect product G = G, ®, G5 with both G, and G, (abelian) subgroups of dimension
respectively 1 and n — 1 and with G5 normal in G.

5. A homogeneous space for G preserving the graded structure

Consider £ = span{A;} and gy = span{A,... A,}. As a consequence of the graded struc-
ture, go is the maximal abelian ideal in g and £ is an abelian Lie subalgebra because of its
dimension. On the corresponding subgroups G, and G, we can form the homogeneous space
G /G i.e. the left cosets of G in G defining the equivalence relation on G

g1 = go (mong) if gflgg S Gﬁ.

Similarly, if we take A, B € g, we can define A + L as the equivalence class of A under the
equivalence relation
A=B(modL) if A—BeL.

As L is not an ideal we cannot talk about quotient algebra but we can at least speak about
quotient vector space. We have the following:

Proposition. The graded structure is preserved under the projection

Y g—g/L. (7)

Proof. In fact, A and B belonging to the same left coset means A, B € span {4, A;} for
some 7. The map (6) can be rewritten as:

m: LoV = Vip
(A, 4) = A

so the composed map 7T = o7 is

T: Vi = Vig
Ai — Ai—i—l- Ol

One could argue that the statement above is trivial because, by construction, the kernel of
¥ has a trivial intersection with g;, ¢ > 2. Since 1(g) = 1(g2), g/L is isomorphic to g as a
vector space. When the component along A; is zero the projection (7) is identically zero.

The chained form in the projective space looks particularly nice: in the canonical coordi-
nates of the second kind (1) the projection corresponds to the quotient of all the coordinates
by &1 = uy. Calling v = uy/u; and rearranging the order we obtain:

T, 01 ...0 T, 0
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where ds = x,dt. The system is linear and already in the classical controllability canonical
form, see [10]. It is obtained by eliminating the time dependence and considering instead a
moving frame parameterized by the arclength of the path followed by the point p € M.
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