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REGULARIZATION OF DIFFERENTIAL OPERATORS ON A
HILBERT SPACE AND GEOMETRIC MEANING OF

ZETA-REGULARIZATION

AKIRA ASADA

Abstract. Let H be a Hilbert space and G a positive non-degenerate Schat-
ten class operator on H such that whose zeta function ζ(G, s) = tr(Gs) is
holomorphic at s = 0. By using spectra of G, we propose a regularization of

differential operators on H and compute proper values and functions of the
regularized Dirac operator on H with the periodic boundary condition. The

answer provides determinant bundle interpretation of zeta-regularization.

1. Introduction

In the study of infinite dimensional geometry, sometimes we need to give a finite
number to the quantity which is originally infinite. We say this process regulariza-
tion. For example, to add infinite degree element or γ5 to the Grassmann algebra or
Clifford algebra over an infinite dimensional space V , we need to regularize the di-
mension of V to be finite. At present, the most powerful tool for the regularization
is the zeta-regularization. Roughly speaking, zeta-regularization is done as follows.
Let D be a differential operator with spectra λn. The zeta function ζ(D, s) of D is
defined be

∑
λ−s

n . If ζ(D, s) allows analytic continuation to s = 0 and holomorphic
at s = 0,then the finite number ζ(D, 0) regularizes the number of proper values of
D, which is infinite. Thanks to the excellent results of Atiyah-Patodi-Singer and
Gilkey([11], for the operators on non compact space, we refer [8]), we can apply
this regularization to many interesting problems of geometry and physics. But in
my knowledge, the geometric meanings of zeta-regularization were never discussed.
In this paper, we show determinant bundle interpretation of zeta-regularization is
possible via the study of proper value problem of regularized Dirac operator on a
Hilbert space with the periodic boundary condition.

The paper is organized as follows. To define the regularization of a differential
operator D on a Hilbert space H, we need to associate a special Schatten class
operator G to H. The regularization : D : of D is defined by

: D : f = G−sDGsf |s=0.

These are explained in the next section(Section 2). Since our attention in this
paper is concentrated to the regularized Dirac operator, we review the definition
of Clifford algebra with the infinite spinor (γ5) over H in Section 3. To consider
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periodic boundary condition, H is not appropriate. Appropriate space to consider
periodic boundary condition is introduced in Section 4. Then the proper value
problem of the regularized Dirac operator with the periodic boundary condition is
solved in Section 5. The answer provides determinant bundle interpretation and
other geometric interpretations of zeta-regularization. These are explained in the
last section.

Acknowledgement. The outline of this paper together with the results on
regularized Laplacian are given in [6]. [6] also contains report on the results on
regularized Laplacian which is a joint work with N.Tanabe.

2. Regularization of differential operators on a Hilbert space

Let H be a (real) Hilbert space, G a positive non-degenerate Schatten class
operator on H such that whose zeta-function ζ(G, s) = tr(Gs) allows analytic
continuation to s = 0 and holomorphic at s = 0. In the rest, we fix the pair H, g.
This pair has the following numerical invariants.

1. ν = ζ(G, 0), the regularized dimension of H.
2. d, the place of the first pole of ζ(G, s).
3. detG = exp(ζ ′(G, 0)).

The meaning of d can be seen by the following example.

Example. Let H be L2(X, E), X is a compact Riemannian manifold and E
is a symmetric vector bundle over X, G the Green operator of a non-degenerate
self-adjoint elliptic (pseudo) differential operator D acting on the sections of E.
Then the pair H,G satisfies above assumptions, because ζ(G, s) is nothing but the
spectral zeta-function ζ(D, s) of D in this case. If D is a 1-st order operator, then
above d is the dimension of X.

Note 1. The positivity of G is not necessary. It is assumed only for the
simplicity. In fact, the most interesting geometric example is obtained in the above
example assuming X is a spin manifold and take D to be the Dirac operator ([2]).

Note 2. G is a kind of metric on H , but since G has no bounded inverse, such
metric does not exist in finite dimensional case. Considering the pairing {H,G} is
closely related to Connes’ spectre triple ([10]).

The complete ortho-normal basis of H is fixed to be en, en is a proper function
of G: Gen = µnen. For simple, we arrange µn as follows. µ1 ≥ µ2 ≥ .... ≥> 0.This
assumption provides limitation to the symmetry of H,G. But in this paper, we do
not discuss on this problem. We introduce k-th Sobolev norm ||x||k of an element
x of H by

||x||k = ||G−kx||.
Here the power Gk of G is defined by

Gkf =
∑

µk(f, en)en.
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We note that since G is positive,for an arbitrary complex number s, Gs is defined
by the same way. The Sobolev space constructed from H and ||x||k is denoted by
W k. By the definition of Sobolev norm, en,k, en,k = µken is the (fixed) complete
orth-normal basis of W k. So the regularized dimension of W k is ν, the regularized
dimension of H. We define the coordinate of x =

∑
xnen by (x1, x2, ...). The

coordinate (x1,k, x2,k, ...) of an element x of W k is defined by x =
∑

xn,ken,k.
Since xn,k = µkxn, we have

G−k(∂/∂xn)Gkf = µk∂f/∂xn,

Gkf(x) = f(Gkx).

Let D be a differential operator on H. Then we set D(s) = G−sDGs. Here s may
be a complex number. Then we define

Definition. Let D be a differential operator on H and f a function on H such
that D(s)f is defined for large s and allows analytic continuation to s = 0 and
holomorphic at s = 0. Then we define the regularization : D : of D by

: D : f = D(s)f |s=0.

Example. Let 4 =
∑

∂2/∂x2
n be the Laplacian on H. Then, since ∂2r/∂x2

n =
1/r−x2

n/r3, r(x) = ||x||, 4r diverges. But since 4(s)r = ζ(G, 2s)/r−
∑

µ2
nx2

n/r3,
we have : 4 : r = (ν − 1)/r as expected.

4 on H does not allow polar coordinate expression. But : 4 : allows polar coor-
dinate expression. In [5](see also [6]), we calculated proper values and functions of
regularized spherical Laplacian on H. Tanabe also investigated regularized spheri-
cal Laplacian from the view point of quantum mechanics on H. He also introduce
regularized momentum operator on the ”sphere” of H and discuss the relation be-
tween Coulomb gauge constraint and the Riemann hypothesis. The meaning of
Planck constant via the regularization is also discussed ([15]). But in this paper,
we concentrate our attention to the study of regularized Dirac operator on H.

3. Clifford algebra with an infinite spinor

Clifford algebra Cl(H) over H is the algebra generated by {en} with the relations
enem+emen = −2δn,m. Here the sign determined by the later convenience. We give
Hilbert space structure to Cl(H) by the inner product induced from the following
inner product of generators

(ei1ei2 · · · eip
, ei1ei2 · · · eip

) = 1,

(ei1ei2 · · · eip
, ej1ej2 · · · ejq

= 0, (i1, i2, · · · ip) 6= (j1, j2, · · · , jq),

(cf.[4 ], [12 ]). But Cl(H) lacks the infinite spinor or γ5, that is the product of all
generators. So we add infinite spinor e∞ to Cl(H) by the relation

e∞en = (−1)ν−1ene∞, e2
∞ = (−1)ν(ν−1)/2.
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This extended algebra is called Clifford algebra over H with an infinite spinor and
denoted by Cl(H)[e∞]. As a module, we have Cl(H)[e∞] is the direct sum of
Cl(H) and Cl(H)e∞.

Note. In general, Cl(H)[e∞] is not associative. It is shown Cl(H)[e∞] is
associative if and only if the regularized dimension ν of H is an integer ([4], see
also [2]). Of course, for arbitrary G, we can not expect the integrity of ν. But if
G is the Green operator of an elliptic operator D, we can select a mass-term m
such that D + m is non-degenerate and ζ(D + m, 0) becomes an integer ([3], [9],
see also [7]). Hence we may assume the integrity of ν. In the rest, we assume the
regularized dimension of H is an integer.

We define the Clifford algebras Cl(W k) and Cl(W k)[e∞,k] over W k by the same
way . Since these algebras are generated by {en,k}, we may consider these algebras
to be the algebras generated by {en} with the relations

enem + emen = −2µ−2k
n δn,m, e2

∞,k = (−1)ν(ν−1)/2(detG)−2k.

While the commutation relation of e∞,k and en is same that of e∞ and en.

It is known Cl(H) is isomorphic to Gr(H), the Grassmann algebra over H,
as a module and has a representation in the algebra of bounded linear operators
on Gr(H) ([12]). Extending this, we can represent Cl(W k)[e∞] in the algebra of
bounded linear operators on Gr(W k) ⊕ Gr(W−k). In this representation, e∞,k is
represented by an offdiagonal matrix with the matrix elements G2k and G−2k ([4]).

To consider periodic boundary condition, we need to modify H and use Clifford
algebras over the modified spaces. So we introduce the following spaces:

W k−0 =
⋂
l<k

W l,

W k+0 =
⋃
l>k

W l.

If k = 0, we denote H− and H+ instead of W 0−0 and W 0 + 0.They are projective
limits and inductive limits of Sobolev spaces and have the following coordinate
expressions:

W k−0 = {
∑

xnen,k|
∑

µ−l
n x2

n < ∞, for some l > 0},

W k+0 = {
∑

xnen,k|
∑

µl
nx2

n < ∞, for all l > 0}.

Hence the Clifford algebras with infinite spinors over W k+0 and W k−0 are generated
by {en,k}. In the rest, we do not use W k+0. But we note that W−k+0 is the dual
space of W k−0 by the standard Sobolev duality.

The Dirac operator D on H is
∑

en∂/∂xn. Similarly, the Dirac operator on W k

is given by
∑

en,k∂/∂xn,k.This operator can be regarded as an operator on W k−0

in one hand and D(k) on the other hand. The regularized Dirac operator : D : on
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H can be regarded as an operator on H− and its subspaces.We note that on scalar
functions, we have

(: D :)2 = − : 4 : .

4. The periodic boundary condition

Our boundary condition to the operator : D : (and D(s)) is

f |
xn=−µ

d/2
n

= f |
xn=µ

d/2
n

.

∂f/∂xn|xn=−µ
d/2
n

= ∂f/∂xn|xn=µ
d/2
n

.

But H is not appropriate to this condition. Because
∑

µ
d/2
n en does not belong to

H. But this element belongs to H−. We also introduce the following subspaces of
H−.

H−(finite) = {
∑

xnen ∈ H−|limn→∞µ−d/2
n xn exists},

H−(0) = {
∑

xnen ∈ H−|limn→∞µ−d/2
n xn = 0}.∑

µ
d/2
n en belongs to H−(finite). By the map∑

xnen 7→
∑

(xn − tµd/2
n )en + t,

limn→∞ µ
d/2
n xn = t, we have

H−(finite) = H−(0)⊕R,

as a module. We consider H−(0) to be a subspace of H−. But the topology of
H−(finite) is the product space topology induced by this direct sum decomposi-
tion.

Note 1. We consider the regularized dimension of H−(0) to be ν. Then the
regularized dimension of H−(finite) should be ν +1. This might causes ambiguity
in the later discussions. But as we remark in the next Section, H−(finite) can be
interpreted as the total space of the determinant bundle over H−(0), which justifies
later discusions.

Note 2. We can define the spaces W k−0(finite) and W k−0(0) by the same
way. Similar to H−(finite) and H−(0), for these spaces, we have

W k−0(finite) = W k−0(0)⊕R.

We denote the lattices in H−(finite) and H(0) generated by the periodic bound-
ary condition by Z∞ and Z∞(0), respectively. Explicitly, they are given by

Z∞ = {
∑

mnµd/2
n en|mn are integers such that mn = mn+1 = . . . = m∞},

Z∞(0) = {
∑

mnµd/2
n en|mn are integers and mn = 0 for n is large}.
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By definitions, we have

Z∞ ∼= {(m1,m2, . . .)|mn ∈ Z, mn = mn+1 = · · · = m∞, n is large},

Z∞(0) ∼= {(m1,m2, . . .)|mn ∈ Z,mn = 0, n is large}.
Similar to H−(finite), Z∞ is the direct sum of Z∞(0) and Z: Z∞ = Z∞(0)⊕ Z.
The direct sum decomposition is given by the map

(m1,m2, . . .) 7→ (m1 −m∞,m2 −m∞, . . . ,m∞).

The fundamental domains of Z∞ and Z∞(0) in H−(finite) and H−(0) are denoted
by Q∞ and Q∞(0), respectively. Then we have Q∞ = Q∞(0) × I. Here I means
the interval [−1, 1].

Note. Strictly saying, we need to assume each mn to be an even number for the
lattice generated by the periodic boundary condition. But we use above definitions
for the simplicity.

Lemma. Let f(x) be
∏

fn(xn), where fn(xn) is either of sin(mnµ
d/2
n πxn) or

cos(mnµ
d/2
n πxn), mn is an integer. Then f(x) vanishes on Q∞ unless fn(xn) is

equal to sin(mnµ
d/2
n πxn) except finite numbers of n, or fn(xn) is equal to

cos(mnµ
d/2
n πxn) except finite numbers of n.

Proof. First we note that the infinite product
∏

sin(xn) vanishes unless
limn→∞ | sin(xn)| = 1. Because otherwise, lim infn→∞ | sin(xn)| = c < 1, so there
are infinitely many n such that | sin(xn)| < c′ < 1.

Applying this fact to f(x), we have Lemma, because on Q∞, limn→∞mnµ
d/2
n πxn

exists.

Note. On Q∞(0), f(x) vanishes unless fn(xn) is equal to cos(mnµ
d/2
n πxn)

except finite numbers of n. That is the possibility of non-vanishing of infinite
product of sin(mnµ

d/2
n πxn) is excluded.

The quotient spaces of H−(finite) and H−(0) by the lattices Z∞ and Z∞(0)
are denoted by T∞ and T∞(0). They are infinite dimensional tori such that T∞ =
T∞(0)× S1 The diameter and orientation of S1 will be given in the next Section.

5. Proper values and proper functions of regularized Dirac
operator with the periodic boundary condition

We compute proper values and functions of the regularized Dirac operator : D :
with the periodic boundary condition, by the method of separation of variables.
: D : is considered to be an operator on H−(finite).

We assume a proper function f of : D : takes the form
∏

fn(xn), fn(xn) =
vn(xn) + enwn(xn), where vn(xn) and wn(xn) are scalar functions. The boundary
condition imposed to fn(xn) is

fn(−µd/2
n ) = fn(µd/2

n ), ∂f/∂xn(−µd/2
n ) = ∂f/∂xn(µd/2

n ).
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The equation D(s)f = λ(s)f induces the equation

∂vn/∂xn = µs
nλnwn, ∂wn/∂xn = −µs

nλnvn.

Hence we have
λn = mnµs

nπ,

vn = A cos(mnµ−d/2
n πxn) + B sin(mnµ−d/2

n πxn).
Here mn means an integer. Since we consider : D : is defined on H−(finite), the
series {m1,m2, . . .} is not arbitrary. It needs to satisfy mn = mn+1 = · · · = m∞,
for n is large. Hence, if the infinite product

∏
fn(xn) has a meaning, we have

D(s)f = −(m∞ζ(G, s− d/2) +
∑

(mn −m∞)µs−d/2
n )f.

Here,
∑

(mn−m∞)µs−d/2
n is a finite sum, hence always has a meaning. Therefore,

if ζ(G,−d/2) is finite, we obtain

: D : f = −(m∞ζ(G,−d/2) +
∑

(mn −m∞)µ−d/2
n )f.

To search the meaning of the infinite product
∏

fn, we set

fn = An cos(mnµ−d/2
n π(xn + cn) + sin(mnµ−d/2

n π(xn + cn)en.

Since we are considering infinite product, we may assume An is equal to 1 for all
n. We also assume cn is equal to 0, for simple. If limn→∞ | cos(mnµ

−d/2
n πxn)| = 1,

then by Lemma in the Section 4, in the development of the infinite product∏
(cos(mnµ−d/2

n πxn) + sin(mnµ−d/2
n πxn)en),

only those terms that contain finite product of en survive. That is this infinite
product takes the value in Cl(H−(finite)). Here we use the convention (−1)∞ =
(−1)ν .

If limn→∞ | sin(mnµ
−d/2
n πxn)| = 1, we rewrite

∏
fn as follows.∏

(cos(mnµ−d/2
n πxn) + sin(mnµ−d/2

n πxn)en)

= e∞
∏

(sin(mnµ−d/2
n πxn) + (−1)ν−n cos(mnµ−d/2

n πxn)en).

Because we thought e∞ to be the infinite product e1e2 · · · . Then by using Lemma,
we conclude this infinite product takes the value in Cl(H−(finite)e∞. Lemma also
shows except these two cases, all terms in the expansion of the infinite product

∏
fn

vanishes on Q∞.

Summarizing these, we have
Proposition. As for the proper values and functions of : D : with the periodic

boundary condition, we have the following two cases.

Case 1. m∞ = 0.: In this case, proper values and functions of : D : comes from
finite dimensional cases. Proper functions take the values in Cl(H−(finite)) and
we need not to adjoin the infinite spinor e∞ (or γ5) to Cl(H−(finite)).
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Case 2. m∞ 6= 0.: In this case, proper values and functions of : D : have no
finite dimensional analogy. Proper functions take the values in Cl(H−(finite))e∞
at some points of Q∞. Hence we need to adjoin e∞ to Cl(H−(finite)).

We also need to emphasize that to get proper functions of : D :, we only need to
adjoin only one infinite spinor to Cl(H−(finite)). That is, we need not to consider
half infinite spinor and so on. This comes from the positivity of G. If we use the
Green operator of the Dirac operator as G, we need to adjoin two half infinite
spinors to Cl(H(finite)). The boundary condition imposed to : D : in this case
might be not Hermitian. These will be discussed in future.

Note. In general, we can not exclude the possibility that ζ(G,−d/2) belongs to
the set {

∑
mnµ

−d/2
n |mn ∈ Z.} Since this is a countable set, in geometric examples,

suitable selection of mass term implies ζ(G,−d/2) /∈ {
∑

mnµ
−d/2
n }. But by the in-

tegrity of ν, the regularized dimension of H, only countable mass term are allowed.
So there may exist example that ζ(G,−d/2) always belongs to {

∑
mnµ

−d/2
n } if ν

is an integer.

Next, we need to show the above proper values and functions are exhaust
proper values and functions of : D :. To show this, first we note that since
|| cos(mnµ

−d/2
n πxn) + sin(mnµ

−d/2
n πxn)en|| is equal to 1, for −1 ≤ x ≤ 1. This

implies ∫ µd/2
n

−µ
d/2
n

|| cos(mnµ−d/2
n πxn) + sin(mnµ−d/2

n πxn)en||2dxn = 2µd/2
n .

Hence we may regularize the integral of f =
∏

fn on Q∞ as follows.∫
Q∞

||f ||2dx1dx2 · · · = 2 ν(detG)d/2.

Therefore, we define the L2 norm of f as an element of L2(Q∞) by ||f ||2 =
2ν/2(detG)d/4, that is we define

||2−ν/2(detG)−d/4f || = 1.

We set m = (m1,m2, . . .) ∈ Z∞ and denote∏
(cos(2mnµ−d/2πxn) + sin(2mnµ−d/2πxn)en) = f(m;x).

Then the set
{2−ν/2(detG)−d/4f(m;x)|m ∈ Z∞},

forms an ortho-normal system in L2(Q∞). It is complete as an ortho-normal system
of L2(T∞). Therefore above proper values and functions exhaust the proper values
and functions of : D : with the periodic boundary condition.

Note 1. Strictly saying, L2(Q∞) and L2(T∞) are not defined. The above
discussion claims the validity to define L2(T∞) to be the Hilbert space spanned by
f(m;x), (m) ∈ Z∞.
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Note 2. T∞ is the product space of T∞(0) and S1. Since this last S1 corre-
sponds to the proper value ζ(G,−d/2), the diameter of S1 is |ζ(G,−d/2)/2π| and
the orientation of S1 is plus if ζ(G,−d/2) is positive and minus if ζ(G,−d/2) is
negative.

In [1] (cf.[2]), we constructed the determinant bundle of a Hilbert manifold
modelled by {H,G} by using the determinant of G. Hence above calculation of
the norm of f(m;x) shows it is better to consider proper functions of : D : to
be the sections of the determinant bundle of H. More precisely, H−(finite)) is
not a subspace of H−. It is the total space of the determinant bundle of H−(0).
Related to this remark, we note that f(m;x) vanishes on H−(0), unless m belongs
to Z∞(0):

f(m;x) = 0, x ∈ Q∞(0), if

m /∈ Z∞(0).

That is unless f(m;x) comes from finite dimensional cases. In other word, without
using determinant bundle, we can not find out the effect of zeta-regularization.

6. Geometric meanings of zeta-regularization

By the results in Section 5, we can give the following geometric meanings of
zeta-regularization.

1. Zeta-regularization and the lattice generated by the periodic boundary condi-
tion.

The lattice in H−(0) generated by the periodic boundary condition is Z∞(0).
As showed in Section 5, zeta-regularization provides no new proper values and
functions other than come from finite dimensional case on this space. To get the
effects of zeta-regularization, we need to use H(finite), that is the lattice Z∞.
Z∞ is the free abelian group generated by en, n ∈ N, en = (m1,m2, . . .),mn =
1,mk = 0, k 6= n, where N is the set of natural numbers. While Z∞ is generated
by (en, 0), n ∈ N and (0, 0, . . . , 1). We may regard the set {(en, 0)|n ∈ N} ∪
{(0, 0, . . . , 1)} to be the one point compactification of the set {(en, 0)|n ∈ N}.
Therefore we may say

Zeta-regularization can be interpreted as the one point compactification of the
set of generators of the free abelian group Z∞(0).

2. Zeta-regularization and the infinite spinor.
Proper functions of : D : comes from the finite dimensional case take the values

in Cl(H−(finite)). In fact, they take the values in Cl(H). While proper functions
of : D : appeared after zeta-regularization take the values in Cl(H−(finite))e∞ at
some points of Q∞, where e∞ is the infinite spinor (γ5) adjoined to Cl(H−(finite)).
Without e∞, zeta-regularization has no effects. Moreover, we need only one infinite
spinor e∞ thought to be

∏
en = e1e2 · · · . That is we need not to adjoin half infinite

spinor and so on to Cl(H−(finite)).Therefore we may say



64 AKIRA ASADA

Zeta-regularization can be interpreted as the infinite spinor (γ5), adjoined to
Cl(H−(finite)).

3. Zeta-regularization and the determinant bundle.

It is known the infinite spinor is a non-trivial section of the determinant bundle
and generate (the fibre of) the determinant bundle ([12 ]). So we can interpret zeta-
regularization as the determinant bundle. This interpretation is seen more directly
by the calculation of the norm of proper functions. As we have shown in Section 5,
||f(m;x)|| is regularized to be 2ν/2(detG)−d/4. Since (detG)d/2 is a section of the
determinant bundle of H− and H−(0) is a subspace of H−, it is better to regard
f(m;x) to be a section of the root of the dual bundle of the determinant bundle of
H−(0). In this interpretation, we need to regard H−(finite) to be the total space
of the (root of the dual bundle of the ) determinant bundle of H−(0). Therefore
we may say

Zeta-regularization can be interpreted as the (root of the dual bundle of the)
determinant bundle of H−(0).

This third interpretation is the most geometric in the above three interpreta-
tions. Snce H−(0) is a flat space, so its determinant bundle is trivial and de-
terminant bundle interpretation seems to have no meaning. But we can define
zeta-regularization of differential operators on a mapping space Map(X, M) , X is
a compact Riemannian manifold, in the following way: We fix a (positive) non-
degenerate self-adjoint elliptic operator D acting on the Rd-valued functions on X,
where n is the dimension of X. Then we can regard Map(X, M) to be a Sobolev
manifold modelled by {W k⊗Rd, G}, G is the Green operator of D.Here W k means
the k-th Sobolev space on X.

Note. Our calculation in this paper shows W k is not appropriate for the study
of regularization of differential operators on Map(X, M). We need to take W k−0(0)
and W k−0(finite) as the models. Precisely saying, original Map(X, M) should
be the manifold modelled by W k−0(0) (cf. [13]), while the manifold modelled by
W k−0(finite) is the total space of the determinant bundle of Map(X, M) modelled
by W k−0(0).

But to select W k−0(0) and W k−0(finite) as models of Map(X, M), there might
exist obstructions related to the topology of M . Study on the symmetry of {H,G}
is also required. These must be the next problem.

In general, D is not defined on the (co)tangent space of Map(X, M). So we
add the connection {AU} to D and denote the Green operator of D + AU by GU

(Note that if D is positive, there exists connection {AU} such that D + AU is non-
degenerate). Then for a differential operator D on Map(X, M), we can define the
operator D(s) by G−s

U DGs
U , and the regularization : D : of D by

: D : f = D(s)f |s=0.
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In this case, the determinant bundle of Map(X, M) is trivial, and remained problem
is the possibility of global definition of root of the determinant bundle (cf.[2]).
On the other hand, if X is a spin manifold and take the Dirac operator to be
D, D + AU must degenerate at some point of Map(X, M) and the determinant
bundle of Map(X, M) should be non-trivial in general ([2]). So we need further
geometric studies when D is the Dirac operator. For example, taking X = S1,
that is Map(X, M) = ΩM , D = −d2/dt2 + m, where t is the circle variable and
m > 0 and /∈ {2nπ|n ∈ N}, the determinant bundle of ωM is trivial if M is a
spin manifold. While considering complexification of ΩM and take D = −id/dt +
m, the determinant bundle is non-trivial unless the 1-st Pontrjagin class of M
vanishes([14], cf [2]).

We conclude this paper by the following note.

Note. The polar coordinate of H has only latitude and lacks longitude. In the
study of regularized spherical Laplacian of H, we need to add longitude to H to
get the effect of zeta-regularization. This suggests the possibility to interpret the
longitude of H to be the (fibre of the) determinant bundle of H.
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