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ON HOLLAND’S FRAME FOR RANDERS SPACE AND ITS
APPLICATIONS IN PHYSICS

P. L. ANTONELLI AND I. BUCATARU

ABSTRACT. From a rigorous Finsler geometric perspective, we re-examine Hol-
land’s Randers space theory of motion of an electron in flat Minkowski space-
time permeated with an electromagnetic field. Holland’s theory was moti-
vated by analogy with plastic deformation and dislocation in Bravais crystals,
through work of D. Bohm on Quantum Mechanics.

We develop the anholonomic geometry of a Randers space using Holland’s
frame and determine two Finsler connections, one of them the crystallographic
connection, the other just Cartan’s connection expressed in terms of anholon-
omy. Corresponding to these, we give two fully covariant versions of Holland’s
theory each of which covers the case of a curved Minkowski space-time. The
crystallographic theory with extra matter is most promising.

0. INTRODUCTION

The well-known approach of D. BOHM (see [BH]) to quantum mechanics casts
quantum theory into a classical form so that classical and quantum physics can be
more easily compared. As a result, the so-called “quantum potential” arises as a
“guide” to motion of particles in space-time as in de Broglie’s pilot-wave theory
[C]. P. HOLLAND [H;], [Hs] noted that a draw-back of this quantum potential
method is that it must derive from ad hoc use of Schrédinger’s equation and further
asked whether the converse procedure, “that of reformulating classical theory in a
manner which is more in accord with the spirit of quantum theory (particularly
in a way which emphasizes the unity of field and particle), might not suggest an
alternative starting point for the theoretical treatment of quantum effects”, [Hi].
His differential geometric method is based on fundamental work of S. AMARI on a
Finsler approach to crystal dislocation theory, [A].

Holland studies a unified formalism which uses a anholonomic frame (non-
integrable 1-form) on space-time, a sort of plastic deformation, arising from con-
sideration of a charged particle moving in an external electromagnetic field in the
background space-time viewed as a strained medium. In fact, Ingarden [I] was first
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to point out that the Lorentz force law, in this case, can be written as a geodesic
equation on a Finsler space called Randers space [R]. This results in geometri-
cal entities which depend on the electromagnetic field (vector potential), particle
(velocity) and background space-time parameters, [Hy]. The Finsler structure im-
plies the existence of a global anholonomic (Holland) frame which in turn yields a
connection with torsion and vanishing Finsler curvatures. Holland shows that the
usual electromagnetic theory can be recovered from an averaging process applied
to the Holland frame and corresponding flat connection, [H;].

Unfortunately, Holland’s theory is not truly Finslerian as he presented it. Tech-
nically, his notion of covariant differential in Randers space (equation (19) in [Hj]
and his local expression for the flat connection (equation (21) in [H;] appear to be
incorrect. In the present paper we use Finsler geometry to derive Holland’s frame
for an arbitrary Randers space; see [AIM], [M], [MR] and [R] for further references
on these Finsler spaces.

Holland’s idea has led us to find Holland type frames for Kropina spaces, as
well, and these results will be reported on elsewhere. The upshot of our work
so far is that it allows us to define intrinsic frames for C-reducible Finsler spaces
of dimension exceeding three. Previous workers have not succeeded in finding
parallel translation invariant frames because of the failure of the so-called strongly
non-Riemannian condition, [M], [MI]. We have found these for the crystallographic
connection, defined herein. They are conformally invariant.

The final remarks in this paper show how to obtain two “fully covariant” curved
space-time versions of Holland’s Theory via Theorem 3.3 or Theorem 3.4. Espe-
cially significant for the latter is the analogy with extra matter defects in crystal
lattices [GZ], [Ki], [K2]. These may be considered to be solutions to problems
posed in [H;], [Hs]. After preliminary material on Finsler geometry in Section 2
we introduce anholonomic frames, and the associated crystallographic connection.
In Section 3 we introduce Holland’s frame for Randers spaces and prove the main
Theorems 3.3 and 3.4 of our paper. In Section 4 we consider the original set-up of
Holland and rederive his results taking care to explain them in our notation.

1. FINSLER SPACES AND FINSLER CONNECTIONS

Let M be a real n-dimensional connected manifold of C*°-class and (T'M, w, M)
its tangent bundle with zero section removed. Every local chart (U, ¢ = (z%)) on
M induces a local chart (7=*(U),¢ = (2%,y")) on TM. The kernel of the linear
mapping m, = TTM — TM is called the vertical distribution and is denoted
by VI'M. For every u € TM, Kerm,, = V,TM is spanned by {8%1 \u} By a
nonlinear connection on T'M we mean a regular n-dimensional distribution H :
uw € TM — H,TM which is supplementary to the vertical distribution i.e.

(1.1) T,TM = H,TM & V,TM, Yu € TM.

A basis for T,TM adapted to the direct sum (1.1) has the form (%

N} (W) 555 lu» gy
Y Y

1%}

u = Pyt

u) The dual basis of this is (da?, §y* = dy® + N;dxj). These are

u—
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the Berwald bases. The vector field mapping J : X(TM) — X(T'M), defined by:

a, ® da,

(1.2) T= 5

is globally defined on T'M and is called the almost tangent structure. It has the
properties:

1°. J? =0;
2°. ImJ = Ker J = VT M. See [MA] or [AIM] for more discussion.

A linear connection (Koszul connection) on TM is a map A : (X,Y) € X(T'M) x
X(TM) — AxY € X(TM) for which we have:

1° AfxigvZ = fAxZ + gAy Z;

2°. AxfY =X(f)+ fAxY; Ax(Y+2)=AxY +AxZ.
Definition 1.1. A linear connection A on T'M is called a Finsler connection (or
an N-linear connection) if:

1° A preserve by parallelism the horizontal distribution HT M;

2° The almost tangent structure J is absolute parallel with respect to A.
For a Finsler connection A it is immediate that A preserves also the vertical dis-

tribution. In the Berwald basis (%, ﬁi‘yi) adapted to the decomposition (1.1), a
Finsler connection can be expressed as:

A 0 p O -
(1.3) %@ It 5k’ Af? yj_Fj’Ty’C
1.3 )
A 1) w0 .
507 a7 Cjiﬁ’ a%iiayj T iigyke

Observe that under a change of induced coordinates on 7'M the functions Fﬁ- trans-
form like the coefficients of a linear connection on M and C’]’?Z- as the components
of a (1,2) tensor field on M. We will say that CJ’?Z» is a (1,2)-type Finsler tensor
field. In general, a tensor field of (r, s)-type on TM is called Finsler tensor field
(or d-tensor field) if under a change of induced coordinates on TM its components
transform like the components of a (r, s) type tensor on the base manifold M.

For X = X* 5?, a horizontal vector field, the absolute differential with respect
to the Finsler connection A is given by:

(1.4) AX'=dX' + F}, X da + Cl XT6y" = dX7 + wi X7,

where w} = F;kdajk + C’;kéyk is the connection 1-form of A. The formula (1.4) can

be written in an equivalent form:

(1.4) AX' =X da® + X'|x6y".
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Here, X "k and X[, are the horizontal and the vertical covariant derivatives of X,
respectively. These must satisfy

(15) Ag,.fk X 61‘1 = XUC 61‘i’ Aafk X 61‘1 =X |k@, 1.€.
7 5‘(2 % T % a‘(l 7 X
(15)/ X\k = (SSL'ik +FrkX N X |k = Tyk + C?”k .

Of course, the horizontal and vertical covariant derivatives with respect to a Finsler
connection A, can be defined in general for a Finsler tensor field. For example,
if T ; are the components of an (1,1) Finsler tensor field then i and v-covariant
derivatives are given by:

% 6TJZ % s Lale al}
T, = Sok + F T — Fi T, and
7 aTJZ % s T 7

For a Finsler connection A one considers typically
T(X,)Y)=AxY — Ay X — [X,Y] and

R(X,Y)Z = AxAyZ — AyAxZ — Ajx v\ Z

the torsion and the curvature. It is well known [AIM], [MA] that in the basis
(%, Bigﬂ) there are only five components of torsion and three components of cur-
vature. The five components of torsion are:

nT <5 5) —. Tk i = (Fk — F’C)i (h) h-torsion

—; (v) h-torsion

(1.7) hT

(35) ==
Ea 5§.ka<aNf k)@, ;
(L2)-

(h) hv-torsion

(v) v-torsion.
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The three components of curvature are given by:

jkh — (5{Eh (Sl'k jk+ mh Jjh*t mk jm~Ytkh

aF;k i i pm
gyt~ Con T Cimban
aci,  oci,

i
Jjkr — oy" 3yk

(1.8) kh =

+Cl = C;-’,fC’fnk
For a Finsler connection A we have the following Ricci identity

X, =X =X R, — X T~ X R

|k|r [r]

(1.9) Xt - X7

i, = X" P — X! Cly = X' | Py

r|k

X plr = Xolp = X™S0 . — X ST

mkr

2. THE PARALLEL DISPLACEMENT DETERMINED BY
AN ANHOLONOMIC FINSLER FRAME

Let V be an open subset on T'M and

(2.1) Yo:iueV =Y, (u) CV,TM, a=1n

7

be a vertical frame over V. Assume that V = TM. If we consider Y, (u) =
Yé(u)aiy,}u, then (Y(u)) are the entries of a nonsingular matrix. Denote by (Yp
the components of the inverse of these matrix. This means that:

o s s
(2.2) YV =05, Y)Y =4,

We call (Y,!) an anholonomic Finsler frame. Naturally, every geometric object field
on T'M can be expressed in anholonomic Finsler frames. For example, if TJZ are the

components of a (1,1) Finsler field, then the anholonomic components are given
by:

(2.3) Tg =Y T)Y].
Consider the anholonomic Berwald basis:

1) ) 0 0
2.4 —=Y'— d —=Y'—.
(24) dxe aggi M oy~ * Jyt

Let A be a Finsler connection with the holonomic coefficients (Ff;, C’ij) given

by (1.3). As we have seen A preserves, by parallelism, the horizontal and vertical

distribution, so in the anholonomic Berwald basis (M%, 31%) the Finsler connection
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A can be expressed as:

b ., 0 g ., 0

Bta 58 = Foopr Bt gyp = Foagyy

(2:5) ) ) 0 0
=7 —  — Y =
A 2 dzP = Chagyy sz’ Bt oy Ca oy’

The functions (Fj,,C3,) are called the anholonomic coefficients of the Finsler
connections, A.

Proposition 2.1. Let A be a Finsler connection with the holonomic coefficients
(FE i3 Ck) and (Y}) be an anholonomic Finsler frame. Then, the anholonomic
coeﬂiczents of the Finsler connection A are given by:

Y oY, v k iy j (5Y’Y ky v %
Fly= 61+YJF YiYy =Yi | =5+ B | V)
_ vk i _ AV
=Yk YY) =YYy

oyy Yye k\ v j ay“Y k i

= Yf|iY§Y,] =Y |;YJYS.

Conwversely, if for a Finsler connection A we know the anholonomic coefficients
(Fg‘v, Cgv> then the holonomic coefficients are given by:

[e3%

oY
k k B _ vk J o B
F =Y, Y;‘ﬂY =Y, (5 i Féﬁ) Y]

SYF

_ k ay B _
——YlﬁYY ( 528

+ Y6 F[s[-}) Y—jay;,@

«

8Y
E _ vkyva B _ vk B
C’ji = Yan |5Y. =Y] <8Y5 C’éﬁ) Y

oYk
oy»r

Yy = (

5] av B
Cf‘)YjYi'

Proof. The first formulae for F); and CJ; can be obtained if we compare (1.3)
and (2.5). For the second we have to take into account

L. (R (R %
* 5P 7 §zB’ > §xd LY
and
SN ) 43 Jov) _ pYa
o ayﬁ J ayﬁ7 o ayJ @ 8y]

which follows from (2.2) by differentiation. O
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We then find that for any Finsler connection (1.3)

(5 51 6 .
(2) |0z’ daP | Lag Sz +Ra'@3y7
(6 0] - 4\ 0 , 0
(27) (b) -@,w- - (Paﬁ +Fﬁa)87y7 +Qa(6)@
[0 0] . 0
(© y ayP | T ety

See [MI] for more discussion. Here, Rlﬁ are the anholonomic components of the
(1,2) type tensor field R, given by (1.7), Q5 and Q]
objects defined by

(5) are the anholonomic

5Y: gyt
— B a
(a) Qlﬁ = 1/;-7 <5ma — 6x5> and

/9 _
vy — 2 Y J
(b) QL =Y. <ayjyi > Y.

Also, the (v)-hv-torsion has components

(2.8)

ON} i .
(28) @ Fl= Gk - m) vy
while the (v)-v-torsion is
Y5 ayi
2. d =Y [ 22—,
( 8) ( ) naﬂ 7 <8ya 8:1]5)

The frame Y, is holonomic if and only if there exists n functions ¢® on M for

which Y,* = %‘;?7 i.e. the 1-form Y;*vdz® is ezact.

Proposition 2.2. The frame Y is holonomic if and only if Qz=0= QZ(g)-

Proof. Qz( 5 = 0 implies Y is independent of y, then Q2 5 = 0 implies Y} are given
by gradients of n functions on M. O

Remark. Y is holonomic if and only if [ﬁsa, %] and [5%, %] are in VI'M, i.e.

iff these Lie brackets are vertical. Of course, 2.7(c) expresses the fact that the fibre
of TM is integrable.

Let X“ be the anholonomic components of a Finsler vector field X. Then the
absolute differential of X with respect to the Finsler connection A can be expressed
as:

(2.9) AX® =dX* + F§ XPdz" + Cg, X 5.
(Here, the reader may note the difference with (19) in [Hy].
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Proposition 2.3. Given an anholonomic Finsler frame (Y?), there exists a unique
Finsler connection A for which the given frame is h- and v-covariant constant. We
call this the Crystallographic connection.

Proof. From (2.6) we have that Y:‘j = 0 is equivalent with FJ; =0 <=

syl oY)
2.1 Fh=-vYo—2 = LYk
( 0) J J oxt oxt ol
Similarly, Y/!|; = 0 < C;B = 0 which is also equivalent with:
oyr oy}
2.10)’ Ch = -yo o= _Lyk
( ) Jv J 8yz ayl Y
(The reader may note the difference between (2.10) and (21) in [Hy]). O

Proposition 2.4. For the Finsler connection given by Proposition (2.3), all three
components of curvature vanish.

Proof. According to ij =0, Y|, = 0 and the Ricci identities (1.9) we obtain

R;‘ké = P;M = Sgi'krﬁ =0. D

3. THE ANHOLONOMIC FINSLER FRAME DETERMINED BY A RANDERS METRIC
(THE HOLLAND FRAME)

Let us consider a Finsler space F™ = (M, a) on an n-dimensional manifold M.
This means that:

1° a: TM — R is of C*-class and continuous on the zero section;

2° « is positively homogeneous with respect to y;

3° The matrix with the entries:
1 0202

@i = 2 Oyl dyi

It’s known that a Finsler space has a canonical nonlinear connection HT M, with

the local coefficients:

(3.1) has a constant rank n on TM.

19 .
3.2 Nt = = (~i yFy"),
(3-2) f 2ayj(my y)
where 7}, are the Christoffel symbols of second kind for the metric tensor a;;. There
is also a Finsler connection (Cartan connection) with the holonomic coefficients

give | I)y:
1 (5a i (SG/ 1 (50/‘
k k e TJ 1]
Fij =5a” ( )

2 oxd oxt  dar
Ck _ lakr aa”‘ + 8arj _ Oaij
Y2 oyl oyt Oy )
As is well-known, this connection is metrical (a,;, = 0 and a;;|; = 0) and h and v
symmetric (T}, = 0 and Sf; = 0) [AIM], [MA].

(3.3)
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Together with the Finsler space F™ = (M, ) we shall consider a covector field
b;(x)dx* on M (or an open set V of M). Then B(x,y) = b;(z)y’ is a scalar function
on TM (or on m=1(V)).

The function L : TM — R, defined by:

(3.4) L(x,y) = a(z,y) + Blz,y)

is also the fundamental function of a Finsler space [AIM], [MR]. The pair (M, L)
is called a Randers space. Denote by:

1 0?12

20yidyd

the fundamental tensor of the Randers space (M,L). Taking into account the
homogeneity of o and L we have:

(3.5) 9ij

, 1. O e
i a0 i) 2 = ap) = —
p-%y ag%j, pii=agp = 25
0=y =g = li=gyll = — =pi+b
(3.6) L Oy’ oy
i % i i i a i L
E:Zp; Cly=p'p; =1, U'pi=F; P@ZE
B B
bip' = —, bil' = —.
=y L
The metric tensors (a;;) and (g;;) are related by:
L p
(3.7) 9ij = _ aij + bipj + pibj + bibj — —pip;
L
= —(aij — pipj) + lit;.

Let us consider now (X}, (,y)) an arbitrary, but fixed anholonomic frame (but
it could be also holonomic). Denote by

aaﬁ(xuy) = Xé(xvy)Xé($7y)azj(xvy)v

the components of the metric (a;;) with respect to (X?). If (X&) are the compo-
nents of the inverse matrix of (X?), denote:

ﬁa:Xf%i, p* = X2 i, EQ:XQ& and pa:Xépi.

Consider (Y;') the matrix with the entries:

i Qo i @
Yj(%y)Z\/;(@—Uﬁ\prpj)-

Then this matrix is invertible and the components of its inverse are:

. L . L .
(Y=1)i = \/; (5; + \/;Mj —plpj> .
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Theorem 3.1. For a Randers space (M, L) consider in the case % >0:

. o . . a
(3.8) Y] = \/; <5Zv — 0y + \/;pzp7>

defined on open set V in TM where g > 0. Then (Y, = Ynf a)v
anholonomic Finsler frame.

We call it, Holland’s frame of Randers space [Hi], [Hz]. It is p-homogeneous of
degree zero in y and a conformal invariant in the sense that L — e®®) . L leaves
Ywi fixed.

Proof. Consider also:

L L
(3.9) V) = \/; <5] + \/;Wj - p%) :

We have to check that YWinW = 8% and Yﬂin’B = 65 . Let us verify the former:

i i L, i o
YA,Yj’Y — <5V+”a£ l, —pp7> (5;7—5753'4— \/Lpﬂyp])
. ) o L . L . :
:5;—f2€j+1/zpzpj+\/a ij—\/a Ui+ 00, p;

i i Py [& i i
—p'pj +p'py 7 — [ =D'pj = 05
O

Theorem 3.2. With respect to Holland’s frame the holonomic components of the
Finsler metric tensor (aqag) is the Randers metric (g;;), that is:

(3.10) 9ij =YY aqps.
Proof. We have

L L
Yiaos =1/~ (55} +y/ 2 —pﬂpg) ap

L L

= Eaaj +po<€j - Epapj

(0% L « L {07 (a7 L L
VoY aap =1/ = <5i +y S —p pi> : (x/aaaj + Paly — \/apapj>
Ly JE ., Lo Lol
- o 1] apz J apng a L apj i

L «

o L7 T, VozL iPj apjpl \/apzy Ozplp]
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L
= a(aij —pipj) + il = gij.

Corollary. We have
Yi¥pa =i, Yop* =10

Theorem 3.3. Consider the Randers space (M, L) and Holland’s Frame (Y}).
Then there exists a unique Finsler connection A (Cartan connection) with local
coefficients (Fg,, Cg,) for which

(1) aaply =0 and aaply =0
(2) the anholonomic components of the (h) h-torsion (v) v-torsion are

[0 « «
Ty = I — B

= —Q% and

N
v = 5 = Oy = =1

Proof. Let us consider A the Cartan connection of the Randers space (M, L). De-
note by (F k> C1.) it’s holonomic coefficients. This is the unique Finsler connection
which satisfies Matsumoto’s Axioms:

(a) ijlk = 0 and gij\k =0;
(b) T}, =0and %) = 0.
Consider (Fg.,C 7) the anholonomic coefficients of this Cartan connection (2.6).
All we have to prove is that (1) and (a) are equivalent and also (2) and (b). First
we prove that

(3.12) gijie = Y'Y aap, Y, and

gijlk =YY aagly Yy,
Let us start with the (RHS) of (3.12),

dag
YRy = (;Uﬁ —aspFy, a(;aFM> YevPyy

YRYP —asgY FO Y)Y — a5 YO F Y Y/

5aa5
oxk

YO‘Yﬁ — gjeYs FéWYk’YYia - gMY;FgWY’:%'B

5Y!

ozk

4 m l «
:ﬁ +Yo¢ka)Y;’

mmﬁmwﬁ—w<
5YZ
Y4 163
<§k Y Fk>YJ

s sYE
Jis g]ZF'gk_gzZFk—i_g@] 5 aY + 9im

T Sxk

oym
B B
Y!

oxk




50 P. L. ANTONELLI AND I. BUCATARU

0V o V5 g
— 9je o kY _gifw}/;‘ = Gijlk-
We have used: a(;ngﬁ = g Y¥ and a5, Y™ = giYy according to (3.10) and
5yt
Sk

A similar formula works for v-covariant derivative. We also have, as in [MI],

j vk
Thy + Q5 = T Y YY)

Fviy) = +Y™FEY,  according to (2.6).

Chy +Q5(,) = CZkYO‘YJYk (equivalent to (2.6)2)
Z gy = S;k}/'iayﬁj-ywk'

Using these formulae we have that (2) and (b) are equivalent. O

Remark. From the second formula of (3.13) we can determine the vertical anholo-
nomic coefficients of the Cartan connection as:

1., 0L

19 Oytoyidyk”
Theorem 3.4. Consider the Randers space (M, L) with Holland’s Frame. The
crystallographic connection satisfies:

a o i yayiyk i
C,B’y = _QB('Y) + CJ}{Z)/; YB Y'Y , where ik =

da
'j/aj/ﬁjf af
1) Gijlk = ] I;Y S
da
av B 8
gij‘k Y; Y Yk’y 8a7 .

2) The holonomic components of the (h) h-torsion, (v) v-torsion and (h) hv-
torsion are:

Tj = Q3 Y2V Vs Si=ng,YaY)Y)  and

C’]’ﬁk = Qg(W)YO’;Y.ﬁ Y,), respectively.

3) This connection is flat and Y . =0, V! |j =0.

alj =

Proof. According to Propositions 2.3 and 2.4, the anholonomic components for

the crystallographic connection are Fﬂo‘V = ng = 0. Then aup5, = %—f and
Qaply = 6; 28 As (3.12) holds also for this connection we have that (1) is verified.

Since Fig, = C§, =0 then, 373 = 7§ = 0 and (3.13) gives (2). Proposition 2.4
gives the condition (3). O

Remark. Since the Holland frame is a conformal invariant it follows from (2.8);
and (2.8)q that the anholonomic objects €25 ) and 73, are conformal invariants.
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Also from Theorem 3.4, 2) we have that the (v) v-torsion S%, and (h) hv-torsion
C;k of the crystallographic connection are conformal invariant.

4. ANHOLONOMIC GEOMETRY OF FLAT RIEMANNIAN SPACE VERSUS RANDERS
SPACE

Let (a;;) be a regular Riemannian metric possibly with non-positive-definite
signature. Suppose (M, a;;) is a flat space. Denote by (7; ) the Christoffel symbols
of second kind of the Riemannian metric.

Since the Riemannian space (M, a;;) is flat there exists a frame X¢ (x) (holo-
nomic or not) on the base manifold such that a,s = X7, (I)Xé (x)a;j(x) are con-
stants. With respect to this frame the coefficients of Levi-Civita connection are
Yy = 0.

Then a(z,y) = aij(z)yiyl = \/aagyo‘yﬁ is the fundamental function of a
Finsler metric.

If we assume that the manifold M is endowed with a covector field b = b;(z)d2?,
then L : TM — R, given by L(z,y) = v/a;j(x)y'y? + b;i(x)y" is the fundamental
function of a Randers space.

Theorem 4.1. For the Randers space (M, L) above with Holland’s Frame, the
Cartan connection is the unique connection which in anholonomic coordinates sat-
isfies:
1) angly =0 and aaply = 0;
(07
2) 75, =5, and 35, = -0, .
The anholonomic coefficients of the Cartan connection are given by

1
(41) ng = §aa5 (aﬁeggw + a”YEQEﬁ - aésg%y)
« 1 ad € 5 €
Chy = 50" (apensy + ayeNss — QseT3y)-

2
Proof. According to Theorem 3.3 the Cartan connection is the unique Finsler con-
nection of the Randers space (M, L) for which (1) and (2) hold.

(From (1) and (2) by some standard computation we can get:

o 1 o (5&55 50[5 50,[3 1 o
P, = 50 (2 + 557 = 500 ) o 50 (@00, + 0re - 06:05)

2

and

1 Oas Odas Oa 1
Cgv _ —,af < 8 o By + 7aa6(aﬂan§7 + avengﬁ — Cb&sn%y)-

Za _
2 oyy  OyP oyd 2
Taking into account that (ang) are constants we get (4.1).

Denote now by “s” the arc length with respect the Riemannian metric, i.e.

ds = (a;j(x)dz'dz?)'/? = (ansdz®dz?)/? and by “S” the arc length with respect
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to Finsler metric, i.e.

(4.2) dS = (ay;(x)dzida? )2 4 by(x)dz’ = (gij(x, y)daida? )2,

It is known that if we perform a variation of (4.2) we get the Lorentz force equation:
d*z’ . da dak - dad

4.3 — L

(43) a2 IR gs s 7 ds

where 77, are the Christoffel symbols of the Riemannian metric (a;;) and F} =
aik(% — gb{c) is the electro-magnetic tensor field. But the equation (4.3) has an
€T

equivalent form:

, d*a’ ; dad da®
(4.3) W+ijﬁﬁ =0,
where F ;k are coefficients of the Cartan connection of the Randers space (M, L). In
anholonomic coordinates given by Holland’s Frame, the equation (4.3)" becomes:
d?i + F¢ Mdﬂ —
s " Pds ds
If we take into account the Theorem (4.1), then the Lorentz equation (4.3) can be
expressed anholonomically as:
d%x®
ds?

(4.4)

dxP dx?
ad _
+ a“(age ‘EH)idS 5 =0

(4.5)
O

Theorem 4.2. Let (M, L) be a Randers space as above with Holland’s Frame and
crystallographic connection. Then 75, =0, ZgA{ =0 and ng = 0. Moreover, this
Finsler connection is flat and metric and Yo’;‘j =0, Yoﬂj =0.

Proof. As (aqg) are constant we have by Theorem 3.4(1) that the crystallographic
connection is metric. Flatness follows from Proposition 2.4 and the parallel trans-
lation invariance of Y,! from Proposition 2.3. O

Remark. As for the crystallographic connection, we have the anholonomic coeffi-
cients Fg = 0‘5‘7 = 0, and the induced absolute differential is:

(4.6) AXY =dX*.
Consequently, the geodesic equations for this connection are d;Tz: =0.

If the Riemannian metric is positive definite we can choose the frame (X& (:c))
such that . ‘
X (@) X3 ()asy (2) = G
In this case according with (3.10) we have:
ginaiYﬂj = (Sag

and this means exactly that (Y, = Yi%)a:ﬁ is an orthogonal frame.
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Final Remark. Consider the absolute differential with holonomic coefficients (2.9),
(2.10) and (2.10)’ in the present paper and compare them to (19) and (21) in [Hy].
For the case of Theorem 4.2 these two sets are identical. However, introduction
of matter curves the flat Minkowski’s 4-space of special relativity. Holland claims
that a fully covariant theory (i.e. a curved space version of Theorem 4.2) is still
possible. Theorem 3.3 is one way to complete his program. In this case the Cartan
torsion tensor plays a crucial role and the three curvature tensors will not vanish.
Unfortunately, the Holland frame is not invariant under parallel translation.

Theorem 3.4 also completes Holland’s program. Indeed, not only is Holland’s
frame invariant, but equation (1) in the statement of Theorem 3.4 has the character
of “extra matter” caused by point defects [Ks]. Point defects in Bravais crystals are
accounted for by non-metricity. Thus, matter in Minkowski 4-space is expressed
according to defect theory via (1). It is obvious that this description is in the spirit
of Holland’s original idea, based on the geometry of defects in crystal lattices, [Hi],
[Ha].
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