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ON HOLLAND’S FRAME FOR RANDERS SPACE AND ITS
APPLICATIONS IN PHYSICS

P. L. ANTONELLI AND I. BUCATARU

Abstract. From a rigorous Finsler geometric perspective, we re-examine Hol-

land’s Randers space theory of motion of an electron in flat Minkowski space-
time permeated with an electromagnetic field. Holland’s theory was moti-

vated by analogy with plastic deformation and dislocation in Bravais crystals,

through work of D. Bohm on Quantum Mechanics.
We develop the anholonomic geometry of a Randers space using Holland’s

frame and determine two Finsler connections, one of them the crystallographic

connection, the other just Cartan’s connection expressed in terms of anholon-
omy. Corresponding to these, we give two fully covariant versions of Holland’s

theory each of which covers the case of a curved Minkowski space-time. The

crystallographic theory with extra matter is most promising.

0. Introduction

The well-known approach of D. Bohm (see [BH]) to quantum mechanics casts
quantum theory into a classical form so that classical and quantum physics can be
more easily compared. As a result, the so-called “quantum potential” arises as a
“guide” to motion of particles in space-time as in de Broglie’s pilot-wave theory
[C]. P. Holland [H1], [H2] noted that a draw-back of this quantum potential
method is that it must derive from ad hoc use of Schrödinger’s equation and further
asked whether the converse procedure, “that of reformulating classical theory in a
manner which is more in accord with the spirit of quantum theory (particularly
in a way which emphasizes the unity of field and particle), might not suggest an
alternative starting point for the theoretical treatment of quantum effects”, [H1].
His differential geometric method is based on fundamental work of S. Amari on a
Finsler approach to crystal dislocation theory, [A].

Holland studies a unified formalism which uses a anholonomic frame (non-
integrable 1-form) on space-time, a sort of plastic deformation, arising from con-
sideration of a charged particle moving in an external electromagnetic field in the
background space-time viewed as a strained medium. In fact, Ingarden [I] was first
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to point out that the Lorentz force law, in this case, can be written as a geodesic
equation on a Finsler space called Randers space [R]. This results in geometri-
cal entities which depend on the electromagnetic field (vector potential), particle
(velocity) and background space-time parameters, [H1]. The Finsler structure im-
plies the existence of a global anholonomic (Holland) frame which in turn yields a
connection with torsion and vanishing Finsler curvatures. Holland shows that the
usual electromagnetic theory can be recovered from an averaging process applied
to the Holland frame and corresponding flat connection, [H1].

Unfortunately, Holland’s theory is not truly Finslerian as he presented it. Tech-
nically, his notion of covariant differential in Randers space (equation (19) in [H1]
and his local expression for the flat connection (equation (21) in [H1] appear to be
incorrect. In the present paper we use Finsler geometry to derive Holland’s frame
for an arbitrary Randers space; see [AIM], [M], [MR] and [R] for further references
on these Finsler spaces.

Holland’s idea has led us to find Holland type frames for Kropina spaces, as
well, and these results will be reported on elsewhere. The upshot of our work
so far is that it allows us to define intrinsic frames for C-reducible Finsler spaces
of dimension exceeding three. Previous workers have not succeeded in finding
parallel translation invariant frames because of the failure of the so-called strongly
non-Riemannian condition, [M], [MI]. We have found these for the crystallographic
connection, defined herein. They are conformally invariant.

The final remarks in this paper show how to obtain two “fully covariant” curved
space-time versions of Holland’s Theory via Theorem 3.3 or Theorem 3.4. Espe-
cially significant for the latter is the analogy with extra matter defects in crystal
lattices [GZ], [K1], [K2]. These may be considered to be solutions to problems
posed in [H1], [H2]. After preliminary material on Finsler geometry in Section 2
we introduce anholonomic frames, and the associated crystallographic connection.
In Section 3 we introduce Holland’s frame for Randers spaces and prove the main
Theorems 3.3 and 3.4 of our paper. In Section 4 we consider the original set-up of
Holland and rederive his results taking care to explain them in our notation.

1. Finsler Spaces and Finsler Connections

Let M be a real n-dimensional connected manifold of C∞-class and (TM, π, M)
its tangent bundle with zero section removed. Every local chart

(
U,ϕ = (xi)

)
on

M induces a local chart
(
π−1(U), φ = (xi, yi)

)
on TM . The kernel of the linear

mapping π∗ = TTM → TM is called the vertical distribution and is denoted
by V TM . For every u ∈ TM , Ker π∗,u = VuTM is spanned by

{
∂

∂yi |u
}
. By a

nonlinear connection on TM we mean a regular n-dimensional distribution H :
u ∈ TM 7→ HuTM which is supplementary to the vertical distribution i.e.

(1.1) TuTM = HuTM ⊕ VuTM, ∀u ∈ TM.

A basis for TuTM adapted to the direct sum (1.1) has the form
(

δ
δxi |u = ∂

∂xi |u −
N j

i (u) ∂
∂yj |u, ∂

∂yi |u
)
. The dual basis of this is (dxi, δyi = dyi + N i

jdxj). These are
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the Berwald bases. The vector field mapping J : X(TM) → X(TM), defined by:

(1.2) J =
∂

∂yi
⊗ dxi,

is globally defined on TM and is called the almost tangent structure. It has the
properties:

1◦. J2 = 0;
2◦. Im J = KerJ = V TM . See [MA] or [AIM] for more discussion.

A linear connection (Koszul connection) on TM is a map ∆ : (X, Y ) ∈ X(TM)×
X(TM) 7→ ∆XY ∈ X(TM) for which we have:

1◦. ∆fX+gY Z = f∆XZ + g∆Y Z;

2◦. ∆XfY = X(f) + f∆XY ; ∆X(Y + Z) = ∆XY + ∆XZ.

Definition 1.1. A linear connection ∆ on TM is called a Finsler connection (or
an N -linear connection) if:

1◦ ∆ preserve by parallelism the horizontal distribution HTM ;

2◦ The almost tangent structure J is absolute parallel with respect to ∆.

For a Finsler connection ∆ it is immediate that ∆ preserves also the vertical dis-
tribution. In the Berwald basis ( δ

δxi ,
∂

∂yi ) adapted to the decomposition (1.1), a
Finsler connection can be expressed as:

(1.3)


∆ δ

δxi

δ

δxj
= F k

ji

δ

δxk
; ∆ δ

δxi

∂

∂yj
= F k

ji

∂

∂yk

∆ ∂

∂yi

δ

δxj
= Ck

ji

δ

δxk
; ∆ ∂

∂yi

∂

∂yj
= Ck

ji

∂

∂yk
.

Observe that under a change of induced coordinates on TM the functions F k
ji trans-

form like the coefficients of a linear connection on M and Ck
ji as the components

of a (1, 2) tensor field on M . We will say that Ck
ji is a (1, 2)-type Finsler tensor

field. In general, a tensor field of (r, s)-type on TM is called Finsler tensor field
(or d-tensor field) if under a change of induced coordinates on TM its components
transform like the components of a (r, s) type tensor on the base manifold M .

For X = Xi δ
δxi , a horizontal vector field, the absolute differential with respect

to the Finsler connection ∆ is given by:

(1.4) ∆Xi = dXi + F i
jkXjdxk + Ci

jkXjδyk = dXi + ωi
jX

j ,

where ωi
j = F i

jkdxk + Ci
jkδyk is the connection 1-form of ∆. The formula (1.4) can

be written in an equivalent form:

(1.4)′ ∆Xi = Xi
|k

dxk + Xi|kδyk.
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Here, Xi
|k

and Xi|k are the horizontal and the vertical covariant derivatives of Xi,
respectively. These must satisfy

∆ δ

δxk
Xi δ

δxi
= Xi

|k

δ

δxi
; ∆ ∂

∂yk
Xi δ

δxi
= Xi|k

δ

δxi
, i.e.(1.5)

Xi
|k

=
δXi

δxk
+ F i

rkXr; Xi|k =
∂Xi

∂yk
+ Ci

rkXr.(1.5)′

Of course, the horizontal and vertical covariant derivatives with respect to a Finsler
connection ∆, can be defined in general for a Finsler tensor field. For example,
if T i

j are the components of an (1, 1) Finsler tensor field then h and v-covariant
derivatives are given by:

(1.6)


T i

j|k
=

δT i
j

δxk
+ F i

rkT r
j − F r

jkT i
r and

T i
j |k =

∂T i
j

∂yk
+ Ci

rkT r
j − Cr

jkT i
r .

For a Finsler connection ∆ one considers typically

T (X, Y ) = ∆XY −∆Y X − [X, Y ] and

R(X, Y )Z = ∆X∆Y Z −∆Y ∆XZ −∆[X,Y ]Z

the torsion and the curvature. It is well known [AIM], [MA] that in the basis
( δ

δxi ,
∂

∂yi ) there are only five components of torsion and three components of cur-
vature. The five components of torsion are:

(1.7)



hT

(
δ

δxi
,

δ

δxj

)
=: T k

ij

δ

δxk
= (F k

ji − F k
ij)

δ

δxk
; (h) h-torsion

vT

(
δ

δxi
,

δ

δxj

)
=: Rk

ij

∂

∂yk
=

(
δNk

i

δxj
−

δNk
j

δxi

)
∂

∂yk
; (v) h-torsion

hT

(
∂

∂yi
,

δ

δxj

)
= Ck

ji

δ

δxk
; (h) hv-torsion

vT

(
∂

∂yi
,

δ

δxj

)
=: P k

ij

∂

∂yk
=

(
∂Nk

j

∂yi
− F k

ij

)
∂

∂yk
; (v) hv-torsion

vT

(
∂

∂yi
,

∂

∂yj

)
=: Sk

ij

∂

∂yk
=
(
Ck

ji − Ck
ij

) ∂

∂yk
(v) v-torsion.
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The three components of curvature are given by:

(1.8)



Ri
jkh =

δF i
jk

δxh
−

δF i
jh

δxk
+ Fm

jkF i
mh − Fm

jhF i
mk + Ci

jmRm
kh

P i
jkh =

∂F i
jk

∂yh
− Ci

jk|h
+ Ci

jmPm
kh

Si
jkr =

∂Ci
jk

∂yr
−

∂Ci
jr

∂yk
+ Cm

jkCi
mr − Cm

jrC
i
mk

For a Finsler connection ∆ we have the following Ricci identity

(1.9)


Xi

|k|r
−Xi

|r|k
= XmRi

mkr −Xi
|m

Tm
kr −Xi|mRm

kr

Xi
|k
|
r
−Xi|

r|k = XmP i
mkr −Xi

|m
Cm

kr −Xi|mPm
kr

Xi|k|r −Xi|r|k = XmSi
mkr −Xi|mSm

kr.

2. The Parallel Displacement Determined by
an Anholonomic Finsler Frame

Let V be an open subset on TM and

(2.1) Yα : u ∈ V → Yα(u) ⊂ VuTM, α = 1, n

be a vertical frame over V . Assume that V = TM . If we consider Yα(u) =
Y i

α(u) ∂
∂yi |u, then

(
Y i

α(u)
)

are the entries of a nonsingular matrix. Denote by (Y α
j )

the components of the inverse of these matrix. This means that:

(2.2) Y i
αY α

j = δi
j , Y i

αY β
i = δβ

α.

We call (Y i
α) an anholonomic Finsler frame. Naturally, every geometric object field

on TM can be expressed in anholonomic Finsler frames. For example, if T i
j are the

components of a (1, 1) Finsler field, then the anholonomic components are given
by:

(2.3) Tα
β = Y α

i T i
jY

j
β .

Consider the anholonomic Berwald basis:

(2.4)
δ

δxα
= Y i

α

δ

δxi
and

∂

∂yα
= Y i

α

∂

∂yi
.

Let ∆ be a Finsler connection with the holonomic coefficients (F k
ij , Ck

ij) given
by (1.3). As we have seen ∆ preserves, by parallelism, the horizontal and vertical
distribution, so in the anholonomic Berwald basis ( δ

δxα , ∂
∂yα ) the Finsler connection
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∆ can be expressed as:

(2.5)


∆ δ

δxα

δ

δxβ
= F γ

βα

δ

δxγ
,∆ δ

δxα

∂

∂yβ
= F γ

βα

∂

∂yγ

∆ ∂
∂yα

δ

δxβ
= Cγ

βα

δ

δxγ
,∆ ∂

∂yα

∂

∂yβ
= Cγ

βα

∂

∂yγ
.

The functions (F γ
βα, Cγ

βα) are called the anholonomic coefficients of the Finsler
connections, ∆.

Proposition 2.1. Let ∆ be a Finsler connection with the holonomic coefficients
(F k

ij, Ck
ij) and (Y i

α) be an anholonomic Finsler frame. Then, the anholonomic
coefficients of the Finsler connection ∆ are given by:

(2.6)



F γ
αβ =

(
δY k

α

δxi
+ Y j

αF k
ji

)
Y i

βY γ
k = Y j

α

(
−

δY γ
j

δxi
+ F k

jiY
γ
k

)
Y i

β

= Y k
α|i

Y i
βY γ

k = −Y γ
j|i

Y j
αY i

β

Cγ
αβ =

(
∂Y k

α

∂yi
+ Y j

αCk
ji

)
Y i

βY γ
k = Y j

α

(
−

∂Y γ
j

∂yi
+ Ck

jiY
γ
k

)
Y i

β

= Y k
α |iY i

βY γ
k = −Y γ

j |iY
j
αY i

β .

Conversely, if for a Finsler connection ∆ we know the anholonomic coefficients
(Fα

βγ , Cα
βγ) then the holonomic coefficients are given by:

(2.6)′



F k
ji = Y k

α Y α
j|βY β

i = Y k
α

(
δY α

j

δxβ
+ Y δ

j Fα
δβ

)
Y β

i

= −Y k
α|βY α

j Y β
i =

(
−δY k

α

δxβ
+ Y k

δ F δ
αβ

)
Y α

j Y β
i

Ck
ji = Y k

α Y α
j |βY β

i = Y k
α

(
∂Y α

j

∂Y β
+ Y δ

j Cα
δβ

)
Y β

i

= −Y k
α |βY α

j Y β
i =

(
−∂Y k

α

∂Y β
+ Y k

δ Cδ
αβ

)
Y α

j Y β
i .

Proof. The first formulae for F γ
αβ and Cγ

αβ can be obtained if we compare (1.3)
and (2.5). For the second we have to take into account

Y i
α

δY α
j

δxβ
= −Y α

j

δY i
α

δxβ
; Y i

α

δY β
i

δxj
= −Y β

i

δY i
α

δxj

and

Y i
α

∂Y α
j

∂yβ
= −Y α

j

∂Y i
α

∂yβ
; Y i

α

∂Y β
i

∂yj
= −Y β

i

∂Y i
α

∂yj

which follows from (2.2) by differentiation.
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We then find that for any Finsler connection (1.3)

(a)
[

δ

δxα
,

δ

δxβ

]
= Ωγ

αβ

δ

δxγ
+ Rγ

αβ

∂

∂yγ

(b)
[

δ

δxα
,

∂

∂yβ

]
= (Pγ

αβ + F γ
βα)

∂

∂yγ
+ Ωγ

α(β)

δ

δxγ
(2.7)

(c)
[

∂

∂yα
,

∂

∂yβ

]
= ηγ

αβ

∂

∂yγ
.

See [MI] for more discussion. Here, Rγ
αβ are the anholonomic components of the

(1, 2) type tensor field Ri
jk given by (1.7), Ωγ

αβ and Ωγ
α(β) are the anholonomic

objects defined by

(a) Ωγ
αβ = Y γ

i

(
δY i

β

δxα
− δY i

α

δxβ

)
and

(b) Ωγ
α(β) = Y i

α

(
∂

∂yj
Y γ

i

)
Y j

β .

(2.8)

Also, the (v)-hv-torsion has components

(2.8) (c) Pγ
αβ =

(
∂N i

k

∂yj
− F i

jk

)
Y γ

i Y j
αY k

β

while the (v)-v-torsion is

(2.8) (d) ηγ
αβ = Y γ

i

(
∂Y i

β

∂yα
− ∂Y i

α

∂yβ

)
.

The frame Y i
α is holonomic if and only if there exists n functions ϕα on M for

which Y α
i = ∂ϕα

∂xi , i.e. the 1-form Y α
i vdxi is exact.

Proposition 2.2. The frame Y i
α is holonomic if and only if Ωγ

αβ = 0 = Ωγ
α(β).

Proof. Ωγ
α(β) = 0 implies Y i

α is independent of y, then Ωγ
αβ = 0 implies Y i

α are given
by gradients of n functions on M .

Remark. Y i
α is holonomic if and only if

[
δ

δxα , δ
δxβ

]
and

[
δ

δxα , ∂
∂yβ

]
are in V TM , i.e.

iff these Lie brackets are vertical. Of course, 2.7(c) expresses the fact that the fibre
of TM is integrable.

Let Xα be the anholonomic components of a Finsler vector field X. Then the
absolute differential of X with respect to the Finsler connection ∆ can be expressed
as:

(2.9) ∆Xα = dXα + Fα
βγXβdxγ + Cα

βγXβδyγ .

(Here, the reader may note the difference with (19) in [H1].
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Proposition 2.3. Given an anholonomic Finsler frame (Y i
α), there exists a unique

Finsler connection ∆ for which the given frame is h- and v-covariant constant. We
call this the Crystallographic connection.

Proof. From (2.6) we have that Y i
α|j

= 0 is equivalent with F γ
αβ = 0 ⇐⇒

(2.10) F k
ji = −Y α

j

δY k
α

δxi
=

δY γ
j

δxi
Y k

γ .

Similarly, Y i
α|j = 0 ⇐⇒ Cγ

αβ = 0 which is also equivalent with:

(2.10)′ Ck
ji = −Y α

j

∂Y k
α

∂yi
=

∂Y γ
j

∂yi
Y k

γ .

(The reader may note the difference between (2.10) and (21) in [H1]).

Proposition 2.4. For the Finsler connection given by Proposition (2.3), all three
components of curvature vanish.

Proof. According to Y i
α|k

= 0, Y i
α|k = 0 and the Ricci identities (1.9) we obtain

Ri
jk` = P i

jk` = Si
jk` = 0.

3. The Anholonomic Finsler Frame Determined by a Randers Metric
(The Holland Frame)

Let us consider a Finsler space Fn = (M,α) on an n-dimensional manifold M .
This means that:

1◦ α : TM → R is of C∞-class and continuous on the zero section;
2◦ α is positively homogeneous with respect to y;
3◦ The matrix with the entries:

(3.1) aij =
1
2

∂2α2

∂yi∂yj
has a constant rank n on TM.

It’s known that a Finsler space has a canonical nonlinear connection HTM , with
the local coefficients:

(3.2) N i
j =

1
2

∂

∂yj
(γi

k`y
ky`),

where γi
k` are the Christoffel symbols of second kind for the metric tensor aij . There

is also a Finsler connection (Cartan connection) with the holonomic coefficients
given by:

(3.3)


F k

ij =
1
2
akr

(
δari

δxj
+

δarj

δxi
− δaij

δxr

)

Ck
ij =

1
2
akr

(
∂ari

∂yj
+

∂arj

∂yi
− ∂aij

∂yr

)
.

As is well-known, this connection is metrical (a
ij|k = 0 and aij |k = 0) and h and v

symmetric (T k
ij = 0 and Sk

ij = 0) [AIM], [MA].
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Together with the Finsler space Fn = (M,α) we shall consider a covector field
bi(x)dxi on M (or an open set V of M). Then β(x, y) = bi(x)yi is a scalar function
on TM (or on π−1(V )).

The function L : TM → R, defined by:

(3.4) L(x, y) = α(x, y) + β(x, y)

is also the fundamental function of a Finsler space [AIM], [MR]. The pair (M,L)
is called a Randers space. Denote by:

(3.5) gij =
1
2

∂2L2

∂yi∂yj

the fundamental tensor of the Randers space (M,L). Taking into account the
homogeneity of α and L we have:

(3.6)



pi :=
1
α

yi = aij ∂α

∂yj
; pi := aijp

j =
∂α

∂yi

`i :=
1
L

yi = gij ∂L

∂yj
; `i := gij`

j =
∂L

∂yi
= pi + bi

`i =
α

L
pi; `i`i = pipi = 1; `ipi = α

L ; pi`i =
L

α

bip
i =

β

α
, bi`

i =
β

L
.

The metric tensors (aij) and (gij) are related by:

gij =
L

α
aij + bipj + pibj + bibj −

β

α
pipj(3.7)

=
L

α
(aij − pipj) + `i`j .

Let us consider now
(
Xi

α(x, y)
)

an arbitrary, but fixed anholonomic frame (but
it could be also holonomic). Denote by

aαβ(x, y) = Xi
α(x, y)Xj

β(x, y)aij(x, y),

the components of the metric (aij) with respect to (Xi
α). If (Xα

i ) are the compo-
nents of the inverse matrix of (Xi

α), denote:

`α = Xα
i `i , pα = Xα

i pi, `α = Xi
α`i and pα = Xi

αpi.

Consider (Y i
j ) the matrix with the entries:

Y i
j (x, y) =

√
α

L

(
δi
j − `i`j +

√
α

L
pipj

)
.

Then this matrix is invertible and the components of its inverse are:

(Y −1)i
j =

√
L

α

(
δi
j +

√
L

α
`i`j − pipj

)
.
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Theorem 3.1. For a Randers space (M,L) consider in the case L
α > 0 :

(3.8) Y i
γ =

√
α

L

(
δi
γ − `i`γ +

√
α

L
pipγ

)
defined on open set V in TM where L

α > 0. Then (Yγ = Y i
γ

∂
∂yi )γ=1,n is an

anholonomic Finsler frame.

We call it, Holland’s frame of Randers space [H1], [H2]. It is p-homogeneous of
degree zero in y and a conformal invariant in the sense that L 7→ eφ(x) · L leaves
Y i

γ fixed.

Proof. Consider also:

(3.9) Y γ
j =

√
L

α

(
δγ
j +

√
L

α
`γ`j − pγpj

)
.

We have to check that Y i
γY γ

j = δi
j and Y i

γY β
i = δβ

γ . Let us verify the former:

Y i
γY γ

j =

(
δi
γ +

√
L

α
`i`γ − pipγ

)(
δγ
j − `γ`j +

√
α

L
pγpj

)

= δi
j − `i`j +

√
α

L
pipj +

√
L

α
`i`j −

√
L

α
`i`j + `i`γpγpj

− pipj + pipγ`γ`j −
√

α

L
pipj = δi

j .

Theorem 3.2. With respect to Holland’s frame the holonomic components of the
Finsler metric tensor (aαβ) is the Randers metric (gij), that is:

(3.10) gij = Y α
i Y β

j aαβ .

Proof. We have

Y β
j aαβ =

√
L

α

(
δβ
j +

√
L

α
`β`j − pβpj

)
aαβ

=

√
L

α
aαj + pα`j −

√
L

α
pαpj

Y α
i Y β

j aαβ =

√
L

α

(
δα
i +

√
L

α
`α`i − pαpi

)
·

(√
L

α
aαj + pα`j −

√
L

α
pαpj

)

=
L

α
aij +

√
L

α
pi`j −

L

α
pipj +

L

α
· α

L

√
L

α
pj`i

+
L

α
· α

L
`i`j −

L

α
·
√

L

α

α

L
`ipj −

L

α
pjpi −

√
L

α
pi`j +

L

α
pipj
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=
L

α
(aij − pipj) + `i`j = gij .

Corollary. We have
Y α

i pα = `i, Y i
αpα = `i.

Theorem 3.3. Consider the Randers space (M,L) and Holland’s Frame (Y i
α).

Then there exists a unique Finsler connection ∆ (Cartan connection) with local
coefficients (Fα

βγ , Cα
βγ) for which

(1) aαβ|γ = 0 and aαβ |γ = 0
(2) the anholonomic components of the (h) h-torsion (v) v-torsion are

τα
βγ := Fα

γβ − Fα
βγ = −Ωα

βγ and

Σα
βγ := Cα

γβ − Cα
βγ = −ηα

βγ .

Proof. Let us consider ∆ the Cartan connection of the Randers space (M,L). De-
note by (F i

jk, Ci
jk) it’s holonomic coefficients. This is the unique Finsler connection

which satisfies Matsumoto’s Axioms:
(a) gij|k = 0 and gij |k = 0;
(b) T i

jk = 0 and Si
jk = 0.

Consider (Fα
βγ , Cα

βγ) the anholonomic coefficients of this Cartan connection (2.6).
All we have to prove is that (1) and (a) are equivalent and also (2) and (b). First
we prove that

gij|k = Y α
k Y β

j aαβ|γY γ
k and(3.12)

gij |k = Y α
i Y β

j aαβ |γY γ
k .

Let us start with the (RHS) of (3.12)1,

aαβ|γY α
i Y β

j Y γ
k =

(
δaαβ

δxγ
− aδβF δ

αγ − aδαF δ
βγ

)
Y α

i Y β
j Y γ

k

= Y γ
k

δaαβ

δxγ
Y α

i Y β
j − aδβY β

j F δ
αγY γ

k Y α
i − aδαY α

i F δ
βγY γ

k Y β
j

=
δaαβ

δxk
Y α

i Y β
j − gj`Y

`
δ F δ

αγY γ
k Y α

i − gi`Y
`
δ F δ

βγY γ
k Y β

j

=
δ

δxk
(g`mY `

αY m
β )Y α

i Y β
j − gj`

(
δY `

α

δxk
+ Y m

α F `
mk

)
Y α

i

− gi`

(
δY `

β

δxk
+ Y m

β F `
mk

)
Y β

j

=
δgij

δxk
− gj`F

`
ik − gi`F

`
jk + g`j

δY `
α

δxk
Y α

i + gim

δY m
β

δxk
Y β

j
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− gj`
δY `

α

δxk
Y α

i − gi`

δY `
β

δxk
Y β

j = gij|k.

We have used: aδβY β
j = gj`Y

`
δ and aδαY α

i = gi`Y
`
δ according to (3.10) and

F δ
αβY `

δ Y β
k =

δY `
α

δxk
+ Y m

α F `
mk according to (2.6).

A similar formula works for v-covariant derivative. We also have, as in [MI],

τα
βγ + Ωα

βγ = T i
jkY α

i Y j
β Y k

γ

Cα
βγ + Ωα

β(γ) = Ci
jkY α

i Y j
β Y k

γ (equivalent to (2.6)2)

α∑
βγ

+ηα
βγ = Si

jkY α
i Y j

β Y k
γ .

Using these formulae we have that (2) and (b) are equivalent.

Remark. From the second formula of (3.13) we can determine the vertical anholo-
nomic coefficients of the Cartan connection as:

Cα
βγ = −Ωα

β(γ) + Ci
jkY α

i Y j
β Y k

γ , where Ci
jk =

1
4

gi` ∂3L2

∂y`∂yj∂yk
.

Theorem 3.4. Consider the Randers space (M,L) with Holland’s Frame. The
crystallographic connection satisfies:

1) gij|k = Y α
i Y β

j Y γ
k

δaαβ

δxγ

gij |k = Y α
i Y β

j Y γ
k

∂aαβ

∂yγ
.

2) The holonomic components of the (h) h-torsion, (v) v-torsion and (h) hv-
torsion are:

T i
jk = Ωα

βγY i
αY β

j Y γ
k ; Si

jk = ηα
βγY i

αY β
j Y γ

k and

Ci
jk = Ωα

β(γ)Y
i
αY β

j Y γ
k , respectively.

3) This connection is flat and Y i
α|j = 0, Y i

α

∣∣
j

= 0.

Proof. According to Propositions 2.3 and 2.4, the anholonomic components for
the crystallographic connection are Fα

βγ = Cα
βγ = 0. Then aαβ|γ = δaαβ

δxγ and
aαβ |γ = ∂aαβ

∂yγ . As (3.12) holds also for this connection we have that (1) is verified.
Since Fα

βγ = Cα
βγ = 0 then,

∑α
βγ = τα

βγ = 0 and (3.13) gives (2). Proposition 2.4
gives the condition (3).

Remark. Since the Holland frame is a conformal invariant it follows from (2.8)b

and (2.8)d that the anholonomic objects Ωα
β(γ) and ηα

βγ are conformal invariants.



ON HOLLAND’S FRAME FOR RANDERS SPACE 51

Also from Theorem 3.4, 2) we have that the (v) v-torsion Si
jk and (h) hv-torsion

Ci
jk of the crystallographic connection are conformal invariant.

4. Anholonomic Geometry of Flat Riemannian Space Versus Randers
Space

Let (aij) be a regular Riemannian metric possibly with non-positive-definite
signature. Suppose (M,aij) is a flat space. Denote by (γi

jk) the Christoffel symbols
of second kind of the Riemannian metric.

Since the Riemannian space (M,aij) is flat there exists a frame Xi
α(x) (holo-

nomic or not) on the base manifold such that aαβ = Xi
α(x)Xj

β(x)aij(x) are con-
stants. With respect to this frame the coefficients of Levi-Civita connection are
γα

βγ = 0.
Then α(x, y) =

√
aij(x)yiyj =

√
aαβyαyβ is the fundamental function of a

Finsler metric.
If we assume that the manifold M is endowed with a covector field b = bi(x)dxi,

then L : TM → R, given by L(x, y) =
√

aij(x)yiyj + bi(x)yi is the fundamental
function of a Randers space.

Theorem 4.1. For the Randers space (M,L) above with Holland’s Frame, the
Cartan connection is the unique connection which in anholonomic coordinates sat-
isfies:

1) aαβ|γ = 0 and aαβ |γ = 0;
2) τα

βγ = −Ωα
βγ and

∑α
βγ = −ηα

βγ .

The anholonomic coefficients of the Cartan connection are given by

Fα
βγ =

1
2
aαδ(aβεΩε

δγ + aγεΩε
δβ − aδεΩε

βγ)(4.1)

Cα
βγ =

1
2
aαδ(aβεη

ε
δγ + aγεη

ε
δβ − aδεη

ε
βγ).

Proof. According to Theorem 3.3 the Cartan connection is the unique Finsler con-
nection of the Randers space (M,L) for which (1) and (2) hold.

¿From (1) and (2) by some standard computation we can get:

Fα
βγ =

1
2
aαδ

(
δaδβ

δxγ
+

δαδγ

δxβ
− δaβγ

δxδ

)
+

1
2
aαδ(aβεΩε

δγ + αγεΩε
δβ − aδεΩε

βγ)

and

Cα
βγ =

1
2
aαδ

(
∂aδβ

∂yγ
+

∂aδγ

∂yβ
− ∂aβγ

∂yδ

)
+

1
2
aαδ(aβεη

ε
δγ + aγεη

ε
δβ − aδεη

ε
βγ).

Taking into account that (aαβ) are constants we get (4.1).
Denote now by “s” the arc length with respect the Riemannian metric, i.e.

ds = (aij(x)dxidxj)1/2 = (aαβdxαdxβ)1/2 and by “S” the arc length with respect
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to Finsler metric, i.e.

(4.2) dS = (aij(x)dxidxj)1/2 + bi(x)dxi = (gij(x, y)dxidxj)1/2.

It is known that if we perform a variation of (4.2) we get the Lorentz force equation:

(4.3)
d2xi

ds2
+ γi

jk

dxj

ds

dxk

ds
= F i

j

dxj

ds
,

where γi
jk are the Christoffel symbols of the Riemannian metric (aij) and F i

j =
aik( ∂bk

∂xj − ∂bj

∂xk ) is the electro-magnetic tensor field. But the equation (4.3) has an
equivalent form:

(4.3)′
d2xi

dS2
+ F i

jk

dxj

dS

dxk

dS
= 0,

where F i
jk are coefficients of the Cartan connection of the Randers space (M,L). In

anholonomic coordinates given by Holland’s Frame, the equation (4.3)′ becomes:

(4.4)
d2xα

dS2
+ Fα

βγ

dxβ

dS

dxγ

dS
= 0.

If we take into account the Theorem (4.1), then the Lorentz equation (4.3) can be
expressed anholonomically as:

(4.5)
d2xα

dS2
+ aαδ(aβεΩε

δγ)
dxβ

dS

dxγ

dS
= 0.

Theorem 4.2. Let (M,L) be a Randers space as above with Holland’s Frame and
crystallographic connection. Then τα

βγ = 0,
∑α

βγ = 0 and Cα
βγ = 0. Moreover, this

Finsler connection is flat and metric and Y i
α|j = 0, Y i

α

∣∣
j

= 0.

Proof. As (aαβ) are constant we have by Theorem 3.4(1) that the crystallographic
connection is metric. Flatness follows from Proposition 2.4 and the parallel trans-
lation invariance of Y i

α from Proposition 2.3.

Remark. As for the crystallographic connection, we have the anholonomic coeffi-
cients Fα

βγ = Cα
βγ = 0, and the induced absolute differential is:

(4.6) ∆Xα = dXα.

Consequently, the geodesic equations for this connection are d2xα

dS2 = 0.

If the Riemannian metric is positive definite we can choose the frame
(
Xi

α(x)
)

such that
Xi

α(x)Xj
β(x)aij(x) = δαβ .

In this case according with (3.10) we have:

gijY
i
αY j

β = δαβ

and this means exactly that
(
Yα = Y i

α
∂

∂yi

)
α=1,n

is an orthogonal frame.
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Final Remark. Consider the absolute differential with holonomic coefficients (2.9),
(2.10) and (2.10)′ in the present paper and compare them to (19) and (21) in [H1].
For the case of Theorem 4.2 these two sets are identical. However, introduction
of matter curves the flat Minkowski’s 4-space of special relativity. Holland claims
that a fully covariant theory (i.e. a curved space version of Theorem 4.2) is still
possible. Theorem 3.3 is one way to complete his program. In this case the Cartan
torsion tensor plays a crucial role and the three curvature tensors will not vanish.
Unfortunately, the Holland frame is not invariant under parallel translation.

Theorem 3.4 also completes Holland’s program. Indeed, not only is Holland’s
frame invariant, but equation (1) in the statement of Theorem 3.4 has the character
of “extra matter” caused by point defects [K2]. Point defects in Bravais crystals are
accounted for by non-metricity. Thus, matter in Minkowski 4-space is expressed
according to defect theory via (1). It is obvious that this description is in the spirit
of Holland’s original idea, based on the geometry of defects in crystal lattices, [H1],
[H2].
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