Abstract: The present paper is devoted to study of certain classes of homogeneous regular subalgebras of the algebra of all complex-valued measurable functions on the unit interval. It is known that the transcendence degree of a commutative unital regular algebra is one of the important invariants of such algebras together with Boolean algebra of its idempotents. It is also known that if \((\Omega, \Sigma, \mu)\) is a Maharam homogeneous measure space, then two homogeneous unital regular subalgebras of \(S(\Omega)\) are isomorphic if and only if their Boolean algebras of idempotents are isomorphic and transcendence degrees of these algebras coincide. Let \(S(0,1)\) be the algebra of all (classes of equivalence) measurable complex-valued functions and let \(AD^{(n)}(0,1)\) (\(n\in \mathbb{N}\cup\{\infty\}\)) be the algebra of all (classes of equivalence of) almost everywhere \(n\)-times approximately differentiable functions on \([0,1].\) We prove that \(AD^{(n)}(0,1)\) is a regular, integrally closed, \(\rho\)-closed, \(c\)-homogeneous subalgebra in \(S(0,1)\) for all \(n\in \mathbb{N}\cup\{\infty\},\) where \(c\) is the continuum. Further we show that the algebras \(S(0,1)\) and \(AD^{(n)}(0,1)\) are isomorphic for all \(n\in \mathbb{N}\cup\{\infty\}.\) As an application of these results we obtain that the dimension of the linear space of all derivations on \(S(0,1)\) and the order of the group of all band preserving automorphisms of \(S(0,1)\) coincide and are equal to \(2^c.\) Finally, we show that the Lie algebra \(\operatorname{Der} S(0, 1)\) of all derivations on \(S(0,1)\) contains a subalgebra isomorphic to the infinite dimensional Witt algebra.
Keywords: regular algebra, algebra of measurable functions, isomorphism, band preserving isomorphism.
For citation: Ayupov, Sh. A., Karimov, Kh. and Kudaybergenov, K. K. Isomorphism between the Algebra of Measurable Functions and its Subalgebra of Approximately Differentiable Functions, Vladikavkaz Math. J., 2023, vol. 25, no. 2, pp. 25-37.
DOI 10.46698/z5485-1251-9649-y
1. Neumann, J. V. On Regular Rings, Proceedings of the National Academy
of Sciences of the United States of America, 1936, vol. 22, no. 12, pp. 707-713.
DOI: 10.1073/pnas.22.12.707.
2. Neumann, J. V. Continuous Rings and Their Arithmetics,
Proceedings of the National Academy of Sciences of the United States of America,
1937, vol. 23, no. 6, pp. 341-349. DOI: 10.1073/pnas.23.6.341.
3. Neumann, J. V. Continuous Geometry, Princeton, N.J., Princeton University Press, 1960.
4. Ayupov, Sh. A. and Kudaybergenov, K. K. Ring Isomorphisms of Murray-von Neumann Algebras,
Journal of Functional Analysis, 2021, vol. 280, no. 5, 108891. DOI: 10.1016/j.jfa.2020.108891.
5. Ayupov, Sh. A. and Kudaybergenov, K. K.
Ring Isomorphisms of \(\ast\)-Subalgebras of Murray-von Neumann Factors,
Lobachevskii Journal of Mathematics, 2021, vol. 42, no. 12, pp. 2730-2739.
DOI: 10.1134/S1995080221120064.
6. Mori, M. Lattice Isomorphisms Between Projection Lattices of von Neumann Algebras,
Forum of Mathematics, Sigma, 2020, vol. 8, no. 49, 19 p. DOI: 10.1017/fms.2020.53.
7. Kusraev, A. G. Automorphisms and Derivations on a Universally Complete Complex \(f\)-Algebra,
Siberian Mathematical Journal, 2006, vol. 47, no. 1, pp. 77-85.
DOI: 10.1007/s11202-006-0010-0.
8. Ayupov, Sh. A., Kudaybergenov, K. K. and Karimov, Kh. Isomorphisms of Commutative Regular Algebras,
Positivity, 2022, vol. 26, Article no. 11, 15 p. DOI: 10.1007/s11117-022-00872-7.
9. Berberian, S. K. Baer \(\ast\)-Rings, Grundlehren der mathematischen Wissenschaften, vol. 195, New York, Berlin, Springer-Verlag, 1972. DOI: 10.1007/978-3-642-15071-5_3.
10. Goodearl, K. R. Von Neumann Regular Rings,
Monographs and Studies in Mathematics, vol. 4, Boston, Massachusetts, London, Pitman, 1979.
11. Clifford, A. N. and Preston, G. B. The Algebraic Theory of Semigroup, Mathemtical Surveys, American Mathematical Society, 1961.
12. Ber, A. F., Chilin, V. I. and Sukochev, F. A. Non-trivial Derivations
on Commutative Regular Algebras, Extracta Mathematicae, 2006, vol. 21, no. 2, pp. 107-147.
13. Fremlin, D. Measure Algebras, Handbook of Boolean algebras, Vol. 3, Amsterdam, North-Holland, 1989, 877-980.
14. Gutman, A. E., Kusraev, A. G. and Kutateladze, S. S. The Wickstead Problem,
Siberian Electronic Mathematical Reports, 2008, vol. 5, pp. 293-333.
15. Maharam, D. On Homogeneous Measure Algebras, Proceedings of the National
Academy of Sciences of the United States of America, 1942, vol. 28, no. 3, pp. 108-111.
DOI: 10.1073/pnas.28.3.108.
16. Vladimirov, D. A. Boolean Algebras in Analysis,
Mathematics and Its Applications, vol. 540, Dordrecht, Kluwer Academic Publishers, 2002.
DOI: 10.1007/978-94-017-0936-1.
17. Federer, H. Geometric Measure Theory, Heidelberg, New York, Springer, 1996.
18. Ber, A. F., Kudaybergenov, K. K. and Sukochev, F. A. Notes on Derivations of Murray-von Neumann Algebras,
Journal of Functional Analysis, 2020, vol. 279, no. 5, 108589. DOI: 10.1016/j.jfa.2020.108589.
19. Ber, A. F. Derivations on Commutative Regular Algebras,
Siberian Advances in Mathematics, 2011, vol. 21, pp. 161-169.
DOI: 10.3103/S1055134411030011.
20. Whitney, H. On Totally Differentiable and Smooth Functions, Pacific Journal of
Mathematics, 1951, vol. 1, no. 1, pp. 143-159.
DOI: 10.2140/pjm.1951.1.143.
21. Movshovich, E. E. Extension of Lipschitz Functions,
Mathematical Notes, 1980, vol. 27, pp. 92-93. DOI: 10.1007/BF01143005.
22. Jacobson, N. Lectures in Abstract Algebra. II. Linear Algebra,
New York, Berlin, Springer-Verlag, 1975. DOI: 10.1007/978-1-4684-7053-6.
23. Cartan, E. Les Groupes de Transformations Continus, Infinis, Simples,
Annales Scientifiques de l'Ecole Normale Superieure, 1909, vol. 26,
pp. 93-161. DOI: 10.24033/asens.603.
24. Bogachev, V. I. Measure Theory. Vol. I, Berlin, Springer-Verlag, 2007.
25. Ber, A. F., Kudaybergenov, K. K. and Sukochev, F. A. Derivation on Murray-von Neumann Algebras,
Russian Mathematical Surveys, 2019, vol. 74, no. 5, pp. 950-952.
DOI: 10.4213/rm9902.
26. Ber, A. F., Kudaybergenov, K. K. and Sukochev, F. A. Derivations of Murray-von Neumann Algebras,
Journal fur die Reine und Angewandte Mathematik, 2022, vol. 791, no. 10, pp. 283-301.
DOI: 10.1515/crelle-2022-0051.
27. Kusraev, A. G. Dominated Operators, Dordrecht, Kluwer Academic Publishers, 2000.
DOI: 10.1007/978-94-015-9349-6_4.