Abstract: Extended real-valued functions on a real vector space with uniform sublevel sets are important in optimization theory. Weidner studied these functions in [1]. In the present paper, we study the class of these functions, which coincides with the class of Gerstewitz functionals, on cones. These cone are not necessarily embeddable in vector spaces. Almost any Weidner's results are not true on cones without extra conditions. We show that the mentioned conditions are necessary, by nontrivial examples. Specially for element k from the cone \(\mathcal{P}\), we define \(k\)-directional closed subsets of the cone and prove some properties of them. For a subset \(A\) of the cone \(\mathcal{P}\), we characterize domain of the \(\varphi_{A,k}\) (function with uniform sublevel set) and show that this function is \(k\)-transitive. One of the important conditions for satisfying the results, is that \(k\) has the symmetric element in the cone. Also, we prove that, under some conditions, the class of Gerstewitz functionals coincides with the class of \(k\)-translative functions on \(\mathcal{P}\).
For citation: Dastouri, A. and Ranjbari, A. Functions with Uniform Sublevel Sets on Cones, Vladikavkaz Math. J., 2023, vol. 25, no. 2, pp. 56-64. DOI 10.46698/c4468-3841-3187-l
1. Weidner, P. Construction Functions with Uniform Sublevel Sets, Optimization Letters, 2018, vol. 12, no. 1, pp. 35-41. DOI: 10.1007/s11590-017-1167-0.
2. Gerstewitz, Ch. and Iwanow, E. Dualitat fur Nichtkonvexe Vektoroptimierungsprobleme,
Wiss. Z. Tech. Hochsch. Ilmenau, 1985, vol. 31, no. 2, pp. 61-81.
3. Gerth, C. and Weidner, P. Nonconvex Separation Theorems and Some Applications in Vector Optimization, Journal of Optimization Theory and Applications, 1990, vol. 67, pp. 297-320. DOI: 10.1007/BF00940478.
4. Weidner, P. Ein Trennungskonzept und seine Anwendung auf Vektoroptimierungsverfahren, Habilitation Thesis, Martin Luther Universitat Halle-Wittenberg, 1990.
5. Kobis, E. and Ko bis, M. Treatment of Set Order Relations by Means of a Nonlinear Scalarization Functional: a Full Characterization, Optimization: A Journal of Mathematical Programming
and Operations Research, 2016, vol. 65, no. 10, pp. 1805-1827. DOI: 10.1080/02331934.2016.1219355.
6. Keimel, K. and Roth, W. Ordered Cones and Approximation, Lecture
Notes in Mathematics, vol. 1517, Heidelberg, Berlin, New York, Springer-Verlag, 1992.
7. Roth, W. Operator-Valued Measures and Integrals for Cone-Valued
Functions, Lecture Notes in Mathematics, vol. 1964, Berlin, Springer-Verlag,
2009.
8. Roth, W. Hahn-Banach Type Theorems for Locally Convex Cones, Journal of the Australian Mathematical Society, 2000, vol. 68, no. 1, pp. 104-125. DOI: 10.1017/S1446788700001609.
9. Ayaseh, D. and Ranjbari, A. Locally Convex Quotient Lattice Cones, Mathematische Nachrichten, 2014, vol. 287, no. 10, pp. 1083-1092. DOI: 10.1002/mana.201200313.
10. Ayaseh, D. and Ranjbari, A. Bornological Locally Convex Cones, Le Matematiche (Catania), 2014, vol. 69, no. 2, 267-284. DOI: 10.4418/2014.69.2.23.
11. Jafarizad, S. and Ranjbari, A. Openness and Continuity in Locally Convex Cones, Filomat, 2017, vol. 31, no. 16, pp. 5093-5103. DOI: 10.2298/FIL1716093J.