Abstract: In this paper we study the uniqueness of entire functions concerning their difference operator and derivatives. The idea of entire and meromorphic functions relies heavily on this direction. Rubel and Yang considered the uniqueness of entire function and its derivative and proved that if \(f(z)\) and \(f'(z)\) share two values \(a,b\) counting multilicities then \(f(z)\equiv f'(z)\). Later, Li Ping and Yang improved the result given by Rubel and Yang and proved that if \(f(z)\) is a non-constant entire function and \(a,b\) are two finite distinct complex values and if \(f(z)\) and \(f^{(k)}(z)\) share \(a\) counting multiplicities and \(b\) ignoring multiplicities then \(f(z)\equiv f^{(k)}(z)\). In recent years, the value distribution of meromorphic functions of finite order with respect to difference analogue has become a subject of interest. By replacing finite distinct complex values by polynomials, we prove the following result: Let \(\Delta f(z)\) be trancendental entire functions of finite order, \( k \geq 0\) be integer and \(P_{1}\) and \(P_{2}\) be two polynomials. If \(\Delta f(z)\) and \(f^{(k)}\) share \(P_{1}\) CM and share \(P_{2}\) IM, then \(\Delta f \equiv f^{(k)}\). A non-trivial proof of this result uses Nevanlinna's value distribution theory.
For citation: Rajeshwari, S. and Sheebakousar, B. Unicity on Entire Functions Concerning Their Difference Operators and Derivatives, Vladikavkaz Math. J., 2023, vol. 25, no. 1, pp. 81-92. DOI 10.46698/p5608-0614-8805-b
1. Haymann, W. K. Meromorphic Function, Oxford, Clarendon Press, 1964.
2. Zhang, J. J. and Liao, L. W. Entire Functions Sharing Some Values with
their Difference Operators, Science China Mathematics, 2014, vol. 57, pp. 2143-2152.
DOI: 10.1007/s11425-014-4848-5.
3. Lahiri, I. Weighted Sharing and Uniqueness of Meromorphic Functions,
Nagoya Mathematical Journal, 2001, vol. 161, no. 3, pp. 193-206.
DOI: 10.1017/S0027763000027215.
4. Rubel, L. A. and Yang, C. C. Values Shared by an Entire Function and its Derivative,
Complex Analysis, Lecture Notes in Mathematics, vol. 599, Berlin, Springer,
1977, pp. 101-103. DOI: 10.1007/BFb0096830.
5. Li, P. and Yang, C. C. Value Sharing of an Entire Function and its Derivatives,
Journal of the Mathematical Society of Japan, 1999, vol. 51, no. 4, pp. 781-799.
DOI: 10.2969/JMSJ/05140781.
6. Chiang, Y. M. and Feng, S. J. On the Nevanlinna Characteristic of \(f(z+\eta)\)
and Difference Equations in the Complex Plane, The Ramanujan Journal, 2008,
vol. 16, no. 1, pp. 105-129. DOI: 10.1007/s11139-007-9101-1.
7. Chiang, Y. M. and Feng, S. J. On the Growth of Logarithemic Differences, Difference
Quotients and Logarithmic Derivatives of Meromorphic Functions, Transactions of the American
Mathematical Society, 2009, vol. 361, pp. 3767-3791. DOI: 10.1090/S0002-9947-09-04663-7.
8. Chen, Z. X. and Yi, H. X. On Sharing Values of Meromorphic Functions and Their Differences,
Results in Mathematics, 2013, vol. 63, pp. 557-565. DOI: 10.1007/s00025-011-0217-7.
9. Halburd, R. G. and Korhonen, R. J. Nevanlinna Theory for the Difference Operator,
Annales Academiae Scientiarum Fennicae. Mathematica, 2006, vol. 31, pp. 463-478.
10. Heittokangas, J., Korhonen, R., Laine, I. and Rieppo, J. Uniqueness of Meromorphic
Functions Sharing Values with their Shifts, Complex Variables and Elliptic Equations,
2011, vol. 56, no. 1-4, pp. 81-92. DOI: 10.1080/17476930903394770.
11. Huang, H. X. and Fang, M. L. Unicity of Entire Functions Concerning their Shifts and
Derivatives, Computational Methods and Function Theory, 2021, vol. 21, pp. 523–532.
DOI: 10.1007/s40315-020-00358-1.
12. Li, S., Duan, M. and Chen, B. Q. Uniqueness of Entire Functions Sharing Two Values
with their Difference Operators, Advances in Difference Equations, 2017, Article no. 390.
DOI: 10.1186/s13662-017-1444-3.
13. Liu, D., Yang, D. G. and Fang, M. L. Unicity of Entire Functions Concerning Shifts
and Difference Operators, Abstract and Applied Analysis, 2014, Article ID 380910. DOI: 10.1155/2014/380910.
14. Liu, K. and Dong, X. J. Some Results Related to Complex Differential-Difference
Equations of Certain Types, Bulletin of the Korean Mathematical Society, 2014, vol. 51, pp. 1453-1467. DOI: 10.4134/BKMS.2014.51.5.1453.
15. Qi, X. G. Value Distribution and Uniqueness of Difference Polynomials
and Entire Solutions of Difference Equations, Annales Polonici Mathematici,
2011, vol. 102, pp. 129-142. DOI: 10.4064/ap102-2-3.
16. Qi, X., Li, N. and Yang, L. Uniqueness of Meromorphic Functions Concerning Their
Differences and Solutions of Difference Painleve Equations, Computational Methods and Function Theory,
2018, vol. 18, pp. 567-582. DOI: 10.1007/s40315-018-0241-7.
17. Yi, H. X. Meromorphic Functions that Share Two or Three Values,
Kodai Mathematical Journal, 1990, vol. 13, pp. 363-372. DOI: 10.2996/kmj/1138039280.
18. Al-Khaladi, A. H. H. Meromorphic Functions that Share one Finite Value CM
or IM with their k-th Derivatives, Results in Mathematics, 2013, vol. 63, pp. 95-105.
DOI: 10.1007/s00025-011-0163-4.
19. Frank, G. and Weissenborn, G. Meromorphic Funktionen, die Mit Einer Ihrer
Ableitungen Werte Teilen, Complex Variables and Elliptic Equations, 1986, vol. 67,
pp. 33-43. DOI: 10.1080/17476938608814184.
20. Wang, J. Uniqueness of Entire Function Sharing a Small Function with its Derivative,
Journal of Mathematical Analysis and Applications, 2010, vol. 362, no. 2, pp. 387-392.
DOI: 10.1016/j.jmaa.2009.09.052.
21. Chiang, Y. M. and Feng, S. J. On the Nevanlinna Characteristic of \(f(z + \eta)\)
and Difference Equations in the Complex Plane, The Ramanujan Journal, 2008, vol. 16,
pp. 105-129. DOI: 10.1007/s11139-007-9101-1.
22. Halburd, R. G. and Korhonen, R. J. Difference Analogue of the Lemma on the Logarithmic
Drivative with Applications to Difference Equations, Journal of Mathematical Analysis
and Applications, 2006, vol. 314, pp. 477-487. DOI: 10.1016/j.jmaa.2005.04.010.
23. Chen, B., Li, S. and Chen, Z. X. Uniqueness of Difference Operators of Meromorphic
Functions, Journal of Inequalities and Applications, 2012, Article no. 48. DOI: 10.1186/1029-242X-2012-48.
24. Deng, B. M., Lei, C. L. and Fang, M. L. Meromorphic Function Sharing Sets with
its Difference Operator or Shifts, Chinese Annals of Mathematics,
Series B, 2019, vol. 40, no. 3, pp. 331-338.
25. Heittokangas, J., Korhonen, R., Laine, I., Rieppo, J. and Zhang, J. Value Sharing Results
for Shifts of Meromorphic Function and Sufficient Conditions for Periodicity,
Journal of Mathematical Analysis and Applications, 2009, vol. 355, no. 1, pp. 352-363.
DOI: 10.1016/j.jmaa.2009.01.053.
26. Zhang, J. J. and Liao, L. W. Entire Functions Sharing Some Values
with their Difference Operators, Science China Mathematics, 2014, vol. 57,
pp. 2143-2152. DOI: 10.1007/s11425-014-4848-5.
27. Huangm, X. H. Unicity on Entire Function Concerning its Differential-Difference Operators,
Results in Mathematics, 2021. DOI: 10.1007/s00025-021-01461-y.
28. Yang, C.-C. and Yi, H. X. Uniqueness Theory of Meromorphic Functions, Dordrecht,
Kluwer Academic Publishers, 2003.