Abstract: This article deals with the numerical treatment of nonlinear Fredholm integral equations of the second kind. The equation treated in this paper has particular kernel, in sense that it is composed of the product between two parts: a weakly singular part not depending on the solution and a nonlinear Frechet differentiable part depending on our solution. The approximate solution proposed in this work is defined as an iterative sequence of Newton-Kantorovich type. To construct this solution, we use three numerical methods: the Newton-Kantorovich method to linearize our problem, the method of regularization with convolution and Fourier series expansion. It needs to obtain a finite rank sequence and "Hat functions projection'' to deal with nonlinear term in the Newton-Kantorovich construction. We prove that this particular Newton-like sequence converges perfectly to the exact solution. In addition, we construct some numerical example to demonstrate its effectiveness in practice. The obtained numerical results confirm the accuracy of the theoretical results.
For citation: Gebbai, H., Ghiat, M., Merchela, W., Segni, S. and Stepanenko, E. V. Approximate Solution of the Nonlinear Fredholm Integral Equation of the Second Kind, Vladikavkaz Math. J., 2023, vol. 25, no. 1, pp. 33-47 (in Russian).
DOI 10.46698/s7895-5601-5395-f
1. Chandrasekhar, S. Radiative Transfer, New York, Dover Publications, 1960, 393 p.
2. Ahues, M., d'Almeida, F. D. and Fernandes, R. R.
Piecewise Constant Galerkin Approximations of Wealkly Singular Integral Equations,
International Journal of Pure and Applied Mathematics, 2009, vol. 4, no. 4, pp. 569-580.
3. Amosov, A. A. and Youssef, Y. E. Error Estimates of Projection Type
Methods for Solving Weakly Singular Integral Equations,
Journal of Mathematical Sciences, 2016, vol. 216, pp. 182-218.
DOI: 10.1007/s10958-016-2895-x.
4. Atkinson, K. and Han, W. Theoretical Numerical Analysis: a Functional Analysis Framework,
New York, Springer, 2001, vol. 216, pp. 342-404.
5. Debbar, R., Guebbai, H. and Zereg, Z. Improving the Convergence Order
of the Regularization Method for Fredholm Integral Equations of the Second Kind,
Applied Mathematics and Computation, 2016, vol. 289, pp. 204-213.
DOI: 10.1016/j.amc.2016.05.018.
6. Guebbai, H. and Grammont, L. A New Degenerate Kernel Method for a Weakly
Singular Integral Equation, Applied Mathematics and Computation, 2014,
vol. 230, pp. 414-427. DOI: 10.1016/j.amc.2013.12.102.
7. Benrabia, N. and Guebbai, H. On the Regularization Method for Fredholm
Integral Equations with Odd Weakly Singular Kernel,
Computational and Applied Mathematics, 2018, vol. 37,
pp. 5162-5174. DOI: 10.1007/s40314-018-0625-3.
8. Lemita, S., Guebbai, H., Sedka, I. and Aissaoui, M. Z.
New Method for the numerical Solution of the Fredholm Linear Integral
Equation on a Large Interval, Russian Universities Reports Mathematics,
2020, vol. 25, no. 132, pp. 387-400 (in Russian).
DOI: 10.20310/2686-9667-2020-25-132-387-400.
9. Guebbai, H. Regularization and Fourier Series for Fredholm Integral
Equations of the Second Kind with a Weakly Singular Kernel,
Numerical Functional Analysis and Optimization, 2017, vol. 39, no. 1, pp. 1-10.
DOI: 10.1080/01630563.2017.1364753.
10. Ahues, A., Largillier, A. and Titaud, O. The Roles of a Weak Singularity
and the Grid Uniformity in Relative Error Bounds, Numerical Functional Analysis and Optimization,
2001, vol. 22, no. 7-8, pp. 789-814. DOI: 10.1081/NFA-100108309.
11. Amosov, A, Ahues, M. and Largillier, A. Superconvergence of Some Projection
Approximations for Weakly Singular Integral Equations Using General Grids,
SIAM Journal on Numerical Analysis, 2009, vol. 47, no. 1, pp. 646-674. DOI: 10.1137/070685464.
12. Dung, V. T. and Ha, Q. T. Approximate Solution for Integral Equations
Involving Linear Toeplitz Plus Hankel Parts, Computational and Applied Mathematics,
2021, vol. 40, article no. 172172. DOI: 10.1007/s40314-021-01558-8.
13. Assari, P. and Dehghan, M. On the Numerical Solution of Nonlinear Integral Equations
on Non-Rectangular Domains Utilizing Thin Plate Spline Collocation Method,
Proceedings - Mathematical Sciences, 2019, vol. 129, article no. 83.
DOI: 10.1007/s12044-019-0511-y.
14. Jain, S. and Jain, S. Fuzzy Generalized Weak Contraction and its Application to Fredholm
Non-Linear Integral Equation in Fuzzy Metric Space, The Journal of Analysis,
2021, vol. 29, pp. 619-632. 10.1007/s41478-020-00270-w.
15. Chapko, R. and Mindrinos, L. On the Non-Linear Integral Equation Approach for
an Inverse Boundary Value Problem for the Heat Equation, Journal of Engineering Mathematics,
2019, vol. 119, pp. 255-268. DOI: 10.1007/s10665-019-10028-4.
16. Lalli F., Campana E., Bulgarelli U. A Numerical Solution of II Kind Fredholm
Equations:A Naval Hydrodynamics Application, Boundary Integral Methods /
eds. Morino, L., Piva, R., Berlin, Heidelberg Springer-Verlag, 1991, pp. 320-327.
DOI: 10.1007/978-3-642-85463-7_31.
17. Evans, L. C. Partial Differential Equations. Graduate Studies in Mathematics, vol. 19,
American Mathematical Society, 1998.
18. Linz, P. Analytical and Numerical Methods for Volterra Equations, Philadelphia, SIAM,
1985. DOI: 10.1137/1.9781611970852.
19. Kantorovich, L. V. and Akilov, G. P. Funktsional'nyy Analliz [Functional Analysis],
Moscow, Nauka, 1984, 750 p. (in Russian).
20. Bounaya, M. C., Lemita, S., Ghiat, M. and Aissaoui, M. Z.
On a nonlinear integro-differential equation of Fredholm type,
International Journal of Computing Science and Mathematics,
2021, vol. 13, no. 2, pp. 194-205. DOI: 10.1504/IJCSM.2021.114188.
21. Ahues, M. Newton Methods with Holder Derivative,
Numerical Functional Analysis and Optimization, 2004, vol. 25, no. 5-6, pp. 379-395.
DOI: 10.1081/NFA-200042171.
22. Alturk, A. Numerical Solution of Linear and Nonlinear Fredholm Integral
Equations by Using Weighted Mean-Value Theorem, SpringerPlus, 2016, vol. 5,
article no. 1962. DOI: 10.1186/s40064-016-3645-8.
23. Hammad, D. A., Semary, M. S. and Khattab, A. G.
Ten Non-Polynomial Cubic Splines for Some Classes of Fredholm Integral Equations,
Ain Shams Engineering Journal, 2022, vol. 13, no. 4, article no. 101666.
DOI: 10.1016/j.asej.2021.101666.
24. Maleknejad, K. and Karami, M. Numerical Solution of Non-Linear Fredholm
Integral Equations by Using Multiwavelets in the Petrov-Galerkin Method,
Applied Mathematics and Computation, 2005, vol. 168, no. 1, pp. 102-110.
DOI: 10.1016/j.amc.2004.08.047.
25. Ghiat, M., Guebbai, H., Kurulay, M. and Segni, S.
On the Weakly Singular Integro-Differential Nonlinear Volterra Equation
Depending in Acceleration Term, Computational and Applied Mathematics,
2018, vol. 39, Article no. 206. DOI: 10.1007/s40314-020-01235-2.
26. Ghiat, M. and Guebbai, H. Analytical and Numerical Study for
an Integro-Differential Nonlinear Volterra Equation with weakly singular kernel,
Computational and Applied Mathematics, 2018, vol. 37, pp. 4661-4674.
DOI: 10.1007/s40314-018-0597-3.
27. Ghiat, M., Kamouche, S., Khellaf, A. and Merchela, W.
On a System of Volterra Integral Equations with a Weakly Singular Kernel,
Itogi Nauki i Tekhniki. Ser. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory,
2021, vol. 193, pp. 33-44 (in Russian). DOI: 10.36535/0233-6723-2021-193-33-44.
28. Ahues, A., Largillier, A. and Limaye, B. V. Spectral Computations for Bounded Operators,
Chapman and Hall/CRC, Boca Raton, 2001.