Abstract: The purpose of the article is to introduce norms in the space of generalized Bessel potentials based on the weighted Dirichlet integrals. First, we define weighted Dirichlet integral and show that this integral can be represented using multidimensional generalised translation. Next, we demonstrate that this norm does not allow to define function spaces of arbitrary fractional order of smoothness. The potential theory originates from the theory of electrostatic and gravitational potentials and the Laplace, wave, Helmholtz, and Poisson equations. The famous Riesz potentials are known to be realizations of the real negative powers of the Laplace and wave operators. In the meantime, a lot of attention in the potential theory is given to the Bessel potential. Generalization in the article is achieved by considering the Laplace-Bessel operator which is constructed on the basis of the singular Bessel differential operator. The theory of singular differential equations containing the Bessel operator and the theory of the corresponding weighted function spaces belong to those mathematical areas, the theoretical and applied significance of which can hardly be overestimated.
Keywords: Bessel operator, generalized Bessel potentials space, weighted Dirichlet integral
For citation: Dzhabrailov, A. L. and Shishkina, E. L. On the Theory of Spaces of Generalized Bessel Potentials, Vladikavkaz Math. J., 2022, vol. 24, no. 3, pp. 62-77(in Russian). DOI 10.46698/c3174-5520-8062-f
1. Stein, E. M. Singular Integrals and Differentiability Properties of Functions.
Princeton Mathematical Series, vol. 30, Princeton, New Jersey,
Princeton University Press, 1970, 304 p.
2. Nikol'skii, S. M. Approximation of Functions of Several Variables
and Imbedding Theorems, Berlin, Heidelberg, Springer, 1975, 420 p.
3. Lyakhov, L. N. and Polovinkina, M. V. The Space of Weighted Bessel Potentials,
Proceedings of the Steklov Institute of Mathematics,
2005, vol. 250, pp. 178-182.
3. Lyakhov, L. N. Inversion of Riesz \(B\)-Potentials,
Doklady Mathematics, 1992, vol. 44, no. 3, pp. 717-720.
4. Lyakhov, L. N. On a Class of Hypersingular Integrals,
Doklady Mathematics, 1991, vol. 42, no. 3, pp. 765-769.
5. Aronszajn, N. and Smith, K. T. Functional Spaces and Functional Completion,
Annales de l'Institut Fourier, 1956, vol. 6, pp. 125-185.
6. Aronszajn, N. and Smith, K. T. Characterization of Positive Reproducing Kernels.
Applications to Green's Functions, American Journal of Mathematics,
1957, vol. 79, no. 3, pp. 611-622. DOI: 10.2307/2372565.
7. Aronszajn, N. and Smith, K. T. Theory of Bessel Potentials,
Annales de l'Institut Fourier, 1961, vol. 11, pp. 385-475.
8. Kipriyanov, I. A. Singulyarnye ellipticheskiye krayevye zadachi
[Singular Elliptic Boundary Value Problems], Moscow,
Nauka, 1997, 204 p. (in Russian).
9. Watson, G. N. Teoriya besselevykh funktsiy
[A Treatise on the Theory of Bessel Functions],
Moscow, Foreign Languages Publishing House, 1949, 728 p. (in Russian).
10. Shishkina, E. L. and Sitnik, S. M. Transmutations, Singular and Fractional
Differential Equations with Applications to Mathematical Physics,
Cambridge, Academic Press, 2020, 592 p.
11. Banach, S. and Saks, S. Sur la Convergence Forte dans les Champs \(L^p\),
Studia Mathematica, 1930, vol. 2, pp. 51-57.
12. Goldman, M. L. The Cone of Rearrangements for Generalized Bessel Potentials,
Proceedings of the Steklov Institute of Mathematics, 2008,
vol. 260, pp. 144-156. DOI: 10.1134/S0081543808010100.
13. Goldman, M. L. Rearrangement Invariant Envelopes of Generalized
Bessel and Riesz Potentials, Doklady Mathematics, 2008, vol. 78, no. 3, pp. 814-818.
DOI: 10.1134/S1064562408060033.
14. Ekincioglu, I., Shishkina, E. L. and Keskin, C. Generalized Bessel Potential
and its Application to Non-Homogeneous Singular Screened Poisson Equation,
Integral Transforms and Special Functions,
2021, vol. 32, no. 12, pp. 932-947.
DOI: 10.1080/10652469.2020.1867983.
15. Dzhabrailov, A., Luchko, Y. and Shishkina, E. Two Forms of an Inverse
Operator to the Generalized Bessel Potential,
Axioms, 2021, vol. 10, no. 3, pp. 1-20.
DOI: 10.3390/axioms10030232.