Address: Vatutina st. 53, Vladikavkaz,
362025, RNO-A, Russia
Phone: (8672)23-00-54
E-mail: rio@smath.ru
Dear authors!
Submission of all materials is carried out only electronically through Online Submission System in
personal account.
DOI: 10.46698/s8393-0239-0126-b
Existence Results for a Dirichlet Boundary Value Problem Involving the \(p(x)\)-Laplacian Operator
Ait Hammou, M.
Vladikavkaz Mathematical Journal 2022. Vol. 24. Issue 2.
Abstract: The aim of this paper is to establish the existence of weak solutions, in \(W_0^{1,p(x)}(\Omega)\), for a Dirichlet boundary value problem involving the \(p(x)\)-Laplacian operator. Our technical approach is based on the Berkovits topological degree theory for a class of demicontinuous operators of generalized \((S_+)\) type. We also use as a necessary tool the properties of variable Lebesgue and Sobolev spaces, and specially properties of \(p(x)\)-Laplacian operator. In order to use this theory, we will transform our problem into an abstract Hammerstein equation of the form \(v+S\circ Tv=0\) in the reflexive Banach space \(W^{-1,p'(x)}(\Omega)\) which is the dual space of \(W_0^{1,p(x)}(\Omega)\). Note also that the problem can be seen as a nonlinear eigenvalue problem of the form\(Au=\lambda u,\) where \(Au:=-Div(|\nabla u|^{p(x)-2}\nabla u)-f(x,u)\). When this problem admits a non-zero weak solution \(u\), \(\lambda\) is an eigenvalue of it and \(u\) is an associated eigenfunction.
For citation: Ait Hammou, M. Existence Results for a Dirichlet Boundary Value Problem Involving the \(p(x)\)-Laplacian Operator, Vladikavkaz Math. J., 2022, vol. 24, no. 2, pp. 5-13.
DOI 10.46698/s8393-0239-0126-b
1.Brouwer, L. E. J. Uber Abbildung von Mannigfaltigkeiten,
Mathematische Annalen, 1912, vol. 71, no. 1, pp. 97-115. DOI: 10.1007/BF01456931.
2. Leray, J. and Schauder, J. Topologie et Equationes Fonctionnelles,
Annales Scientifiques de l'Ecole Normale Superieure,
1934, vol. 51, pp. 45-78.
DOI: 10.24033/asens.836.
3. Berkovits, J. On the Degree Theory for Nonlinear Mappings of Monotone Type,
Annales Academia Scientiarum Fennica. Series A I. Mathematica Dissertationes, 1986, vol. 58, 58 p.
4. Berkovits, J. Extension of the Leray-Schauder Degree for abstract Hammerstein
Type Mappings, Journal of Differential Equations, 2007, vol. 234, no. 1, pp. 289-310.
DOI: 10.1016/j.jde.2006.11.012.
5. Berkovits, J. and Mustonen, V. On Topological Degree for Mappings of Monotone Type,
Nonlinear Analysis: Theory, Methods and Applications,
1986, vol. 10, no. 12, pp. 1373-1383.
DOI: 10.1016/0362-546X(86)90108-2.
6. Berkovits, J. and Mustonen, V. Nonlinear Mappings of Monotone Type I.
Classification and Degree Theory,
Preprint no. 2/88, Mathematics, University of Oulu.
7. Fan, X. L. and Zhang, Q. H.
Existence of Solutions for \(p(x)\)-Laplacian Dirichlet Problem,
Nonlinear Analysis: Theory, Methods and Applications,
2003, vol. 52, no. 8, pp. 1843-1852.
DOI: 10.1016/S0362-546X(02)00150-5.
8. Ilias, P. S. Existence and Multiplicity of Solutions of
a \(p(x)\)-Laplacian Equations in a Bounded Domain,
Revue Roumaine des Mathematiques Pures et Appliquees,
2007, vol. 52, no. 6, pp. 639-653.
9. Fan, X. L. and Zhao, D. On the Spaces \(L^{p(x)}(\Omega)\) and \(W^{m,p(x)}(\Omega)\),
Journal of Mathematical Analysis and Applications, 2001, vol. 263, no. 2, pp. 424-446.
DOI: 10.1006/jmaa.2000.7617.
10. Kovacik, O. and Rakosnik, J. On Spaces \(L^{p(x)}\) and \(W^{1,p(x)}\),
Czechoslovak Mathematical Journal, 1991, vol. 41, pp. 592-618.
11. Zhao, D., Qiang, W. J. and Fan, X. L. On Generalizerd Orlicz Spaces \(L^{p(x)}(\Omega)\),
Journal of Gansu Sciences, 1996, vol. 9, no. 2, pp. 1-7.
12. Samko, S. G. Density of \(\mathcal{C}_0^\infty (\mathbb{R}^N)\)
in the Generalized Sobolev Spaces \(W^{m,p(x)}(\mathbb{R}^N)\),
Doklady Akademii Nauk, 1999, vol. 369, no. 4, pp. 451-454.
13. Chang, K. C. Critical Point Theory and Applications,
Shanghai, Shanghai Scientific and Technology Press, 1986.
14. Zeidler, E. Nonlinear Functional Analysis and its Applications,
II/B: Nonlinear Monotone Operators, New York, Springer-Verlag, 1985.