Address: Vatutina st. 53, Vladikavkaz,
362025, RNO-A, Russia
Phone: (8672)23-00-54
E-mail: rio@smath.ru
Dear authors!
Submission of all materials is carried out only electronically through Online Submission System in
personal account.
DOI: 10.46698/l0779-9998-4272-b
Order Properties of Homogeneous Orthogonally Additive Polynomials
Kusraeva, Z. A.
Vladikavkaz Mathematical Journal 2021. Vol. 23. Issue 3.
Abstract: This is a survey of author's results on the structure of orthogonally additive homogeneous polynomials in vector, Banach and quasi-Banach lattices. The research method is based on the linearization by means of the power of a vector lattice and the canonical polynomial, presented in Section 1. Next, in Section 2, some immediate applications are given: criterion for kernel representability, existence of a simultaneous extension and multiplicative representation from a majorizing sublattice, a characterization of extreme extensions. Section 3 provides a complete description and multiplicative representation for homogeneous disjointness preserving polynomials. Section 4 is devoted to the problem of compact and weakly compact domination for homogeneous polynomials in Banach lattices. Section 5 deals with convexity and concavity of homogeneous polynomials between quasi-Banach lattices, while Section 6 handle the condition under which the quasi-Banach lattice of orthogonally additive homogeneous polynomials is \((p,q)\)-convex, or \((p,q)\)-concave, or geometrically convex. Section 7 provides a characterization and analytic description of polynomials representable as a finite sum of disjointness preserving polynomials. Finally, some challenging open problems are listed in Section 8.
Keywords: vector lattice, quasi-Banach lattice, the power of a vector lattice, polymorphism, linearization, factorization, domination problem, integral representations
For citation: Kusraeva, Z. A. Order Properties of Homogeneous Orthogonally Additive Polynomials, Vladikavkaz Math. J., 2021, vol. 23, no. 3, pp. 91-112 (in Russian). DOI 10.46698/l0779-9998-4272-b
1. Dineen, S. Complex Analysis on Infinite Dimensional Spaces,
Berlin, Springer, 1999.
2. Grecu, B. C. and Ryan, R. A. Polynomials on Banach Spaces with Unconditional Bases,
Proceedings of the American Mathematical Society, 2005, vol. 133, no. 4, pp. 1083-1091.
DOI: 10.1090/S0002-9939-04-07738-X.
3. Bu, Q. and Buskes, G. Polynomials on Banach Lattices and Positive Tensor Products,
Journal of Mathematical Analysis and Applications, 2012, vol. 388, no 2, pp. 845-862.
DOI: 10.1016/j.jmaa.2011.10.001.
4. Loane, J. Polynomials on Riesz Spaces,
Thesis, Department of Mathematics National Univercity of Ireland, Galway, 2007.
5. Linares, P. Orthogonal Additive Polynomials and Applications
Thesis, Departamento de Analisis Matematico,
Universidad Complutense de Madrid, 2009.
6. Kusraeva, Z. A. Orthogonally Additive Polynomials on Vector Lattices: PhD Thesis,
Novosibirsk, Sobolev Institute of Mathematics, 2013.
7. Kusraeva, Z. A. Powers of Quasi-Banach Lattices and Orthogonally Additive Polynomials,
Journal of Mathematical Analysis and Applications, 2018, vol. 458, no. 1, pp. 767-780.
DOI: 10.1016/j.jmaa.2017.09.019.
8. Kusraeva, Z. A. Convexity Conditions for the Space of Regular Operators,
Positivity, 2019, vol. 23, no. 2, pp. 445-459. DOI: 10.1007/s11117-018-0616-z.
9. Kusraev A. G., Kusraeva Z. A. Sums of Order Bounded Disjointness Preserving Linear Operators,
Siberian Mathematical Journal, 2019, vol. 60, no. 1, pp. 114-123. DOI: 10.1134/S0037446619010130.
10. Kusraeva, Z. A. Monomial Decomposition of Homogeneous Polynomials in Vector Lattices,
Advances in Operator Theory, 2019, vol. 4, no. 2, pp. 428-446. DOI: 10.15352/aot.1807-1394.
11. Kusraeva, Z. A. Sums of Disjointness Preserving Multilinear Operators,
Positivity, 2021, vol. 25, no. 2, pp. 669-678. DOI: 10.1007/s11117-020-00781-7.
12. Kusraeva, Z. A. Representation of Orthogonally Additive Polynomials, Siberian Mathematical Journal, 2011, vol. 52, article number: 248. DOI: 10.1134/S003744661102008X.
13. Kusraeva, Z. A. On Extension of Regular Homogeneous Orthogonally Additive Polynomials,
Vladikavkaz Math. J., 2011, vol. 13, no. 4, pp. 28-34.
14. Kusraeva, Z. A. Homogeneous Orthogonally Additive Polynomials on Vector Lattices,
Mathematical Notes, 2012, vol. 91, no. 5, pp. 657-662. DOI: 10.1134/S0001434612050069.
15. Kusraeva, Z. A. Homogeneous Polynomials, Root Mean Power, and Geometric Means
in Vector Lattices, Vladikavkaz Math. J., 2014, vol. 16, no. 4, pp. 49-53.
DOI: 10.23671/VNC.2014.4.10260.
16. Kusraeva, Z. A. Characterization and Multiplicative Representation of Homogeneous
Disjointness Preserving Polynomials, Vladikavkaz Math. J., 2016, vol. 18, no. 1, pp. 51-62.
DOI: 10.23671/VNC.2016.1.5951.
17. Kusraeva, Z. A. On Compact Domination of Homogeneous Orthogonally Additive Polynomials,
Siberian Mathematical Journal, 2016, vol. 57, no. 3, pp. 519-524. DOI: 10.17377/smzh.2016.57.313.
18. Aliprantis, C. D. and Burkinshaw, O. Positive Operators, London etc.,
Acad. Press Inc., 1985.
19. Maligranda, L. Type, Cotype and Convexity Properties of Quasi-Banach Spaces,
Proceedings of the International Symposium on Banach and Function Spaces (Kitakyushu, Japan),
Yokohama, Yokohama Publ., 2004, pp. 83-120.
20. Kalton, N. J. Quasi-Banach Spaces / Eds. W. B. Johnson, J. Lindenstrauss,
Handbook of the Geometry of Banach Spaces, Amsterdam, Elsevier, 2003, vol. 2, pp. 1118-1130.
21. Boulabiar, K. and Buskes, G. Vector Lattice Powers: \(f\)-Algebras and Functional Calculus,
Communications in Algebra, 2006, vol. 34, no. 4, pp. 1435-1442. DOI: 10.1080/00927870500454885.
22. Ben Amor, F. Orthogonally Additive Homogenous Polynomials on Vector Lattices,
Communications in Algebra, 2015, vol. 43, no. 3, pp. 1118-1134. DOI: 10.1080/00927872.2013.865038.
23. Benyamini, Y., Lassalle, S. and Llavona, J. G. Homogeneous Orthogonally Additive Polynomials
on Banach Lattices, Bulletin of the London Mathematical Society, 2006, vol. 38,
no. 3, pp. 459-469. DOI: 10.1112/S0024609306018364.
24. Ibort, A., Linares, P. and Llavona, J. G. A Representation Theorem for Orthogonally
Additive Polynomials on Riesz Spaces, Revista Matematica Complutense, 2012,
vol. 25, pp. 21-30. DOI: 10.1007/s13163-010-0053-4.
25. Kantorovich, L. V. and Akilov, G. P. Functional Analysis, St. Petersburg,
Nevsky Dialect; BHV-Petersburg, 2004.
26. Kusraev, A. G. Dominated Operators, Dordrecht, Kluwer Academic Publ., 2000.
DOI: 10.1007/978-94-015-9349-6.
27. Meyer-Nieberg, P. Banach Lattices, Berlin etc., Springer-Verlag, 1991.
DOI: 10.1007/978-3-642-76724-1.
28. Buskes, G. and Schwanke, C. Characterizing Bounded Orthogonally
Additive Polynomials on Vector Lattices, Archiv der Mathematik, 2019, vol. 112, pp. 181-190.
DOI: 10.1007/s00013-018-1251-4.
29. Schwanke, C. Some Notes on Orthogonally Additive Polynomials, Functional Analysis,
2020, arXiv:2012.13124.
30. Gutman, A. E. Disjointness Preserving Operators, Vector Lattices and Integral Operators / Ed.: S. S. Kutateladze, Mathematics and Its Applications, vol. 358, Dordrecht etc., Kluwer Academic Publ., 1996, pp. 359-454. DOI: 10.1007/978-94-009-0195-7_5.
31. Abramovich, Y. A. and Aliprantis, C. D. Positive Operators, Handbook of the Geometry of
Banach Spaces, vol. 1 / Eds. W. B. Johnson and J. Lindenstrauss, Amsterdam a.o., Elsevier, 2001, pp. 85-122.
32. Flores, J., Hernandez, F. L. and Tradacete, P. Domination Problems
for Strictly Singular Operators and Other Related Classes, Positivity, 2011, vol. 15, no. 4, pp. 595-616. DOI: 10.1007/s11117-010-0100-x.
33. Cuartero B. and Triana M. A. \((p, q)\)-Convexity in Quasi-Banach Lattices
and Applications, Studia Mathematica, 1986, vol. 84, pp. 113-124. DOI: 10.4064/sm-84-2-113-124.
34. Wickstead, A. W. Converses for the Dodds-Fremlin and Kalton-Saab Theorems,
Mathematical Proceedings of the Cambridge Philosophical Society, 1996,
vol. 120, no. 1, pp. 175-179. DOI: 10.1017/S0305004100074752.
35. Wickstead, A. W. Extremal Structure of Cones of Operators, The Quarterly Journal
of Mathematics, 1981, vol. 32, no. 2, pp. 239-253.
36. Li, Y. and Bu, Q. Majorization for Compact and weakly Compact Polynomials on Banach Lattices /Eds.: Buskes at al., Positivity and Noncommutative Analysis, Trends in Mathematics, Cham, Birkhauser/Springer, 2019, pp. 339-348. DOI: 10.1007/978-3-030-10850-2_18.
37. Kusraev, A. G. and Kusraeva, Z. A. Compact Disjointness Preserving Polynomials on Quasi-Banach Lattices, Journal of Mathematical Analysis and Applications, 2021, vol. 498, no. 1, article: 124924. DOI: 10.1016/j.jmaa.2021.124924.
38. Reisner, S. Operators which Factor Through Convex Banach Lattices,
Canadian Journal of Mathematics, 1980, vol. 32, no. 6, pp. 1482-1500. DOI: 10.4153/CJM-1980-117-5.
39. Raynaud, Y. and Tradacete, P. Interpolation of Banach Lattices and Factorization of \(p\)-Convex
and \(q\)-Concave Operators, Integral Equations and Operator Theory, 2010, vol. 66, pp. 79-112. DOI: 10.1007/s00020-009-1733-7.
40. Pisier, G. Grothendieck’s Theorem, Past and Present, Bulletin of the American Mathematical Society, 2012, vol. 49, no. 2, pp. 237-323. DOI: 10.1090/S0273-0979-2011-01348-9.
41. Krivine J. L. Theoremes de Factorization dans les Espaces Reticules,
Seminaire Analyse Fonctionalle (dit. "Maurey-Schwartz"), 1973-1974, pp. 12-13.
42. Kalton, N. J. Convexity Conditions for Non-Locally Convex Lattices,
Glasgow Mathematical Journal, 1984, vol. 25, no. 2, pp. 141-152. DOI: 10.1017/S0017089500005553.
43. Diestel, J., Jarchow, H. and Tonge, A. Absolutely Summing Operators, N.Y., Cambridge Univ. Press, 1995. DOI: 10.1017/CBO9780511526138.
44. Bu, Q., Buskes, G. and Li, Y. Abstract \(M\)- and Abstract \(L\)-Spaces
of Polynomials on Banach Lattices, Proceedings of the Edinburgh Mathematical Society, 2015, vol. 58, no. 3, pp. 617-629.
45. D\(\breve{a}\)net, N. \(p\)-Convexity (\(p\)-Concavity) of Some Banach Lattices of
Operators, Analele Universitatii din Craiova Seria Matematic\(\breve{a}\)-Fizic\(\breve{a}\)-Chimie,
1985, vol. 13, p. 38-45.
46. Bernau, C. B., Huijsmans, C. B. and de Pagter, B. Sums of Lattice Homomorphisms,
Proceedings of the American Mathematical Society, 1992, vol. 115, no. 1, pp. 151-156.
DOI: 10.1090/S0002-9939-1992-1086322-8.
47. Dineen S. Extreme Integral Polynomials on a Complex Banach Space, Mathematica
Scandinavica, 2003, vol. 92, no. 1, pp. 129-140. DOI: 10.7146/math.scand.a-14397.
48. Dimant V., Galicer D. and Garcia R. Geometry of Integral Polynomials, \(M\)-Ideals
and Unique Norm Preserving Extensions, Journal Of Functional Analysis, 2012,
vol. 262, no 5, pp. 1987-2012. DOI: 10.1016/j.jfa.2011.12.021.
49. Wickstead, A. W. When do the Regular Operators Between two Banach Lattices form a Lattices,
Positivity and Noncommutative Analysis / Eds. G. Buskes et al.,
Trends in Mathematics, Springer, 2019, pp. 591-599.