Let \(E\) and \(F\) be Banach lattices and let \(\mathcal{P}_o({}^s\!E,F)\) stand for the space of all norm bounded orthogonally additive \(s\)-homogeneous polynomial from \(E\) to \(F\). Denote by \(\mathcal{P}_o^r({}^s\!E,F)\) the part of \(\mathcal{P}_o({}^s\!E,F)\) consisting of the differences of positive polynomials. The main results of the paper read as follows.
Theorem 3.4. Let \(s\in\mathbb{N}\) and \((E,\|\cdot\|)\) is a \(\sigma\)-Dedekind complete \(s\)-convex Banach lattice. The following are equivalent: \((1)\) \(\mathcal{P}_o({}^s\!E,F)\equiv\mathcal{P}_o^r({}^s\!E,F)\) for every \(AM\)-space \(F\). \((2)\) \(\mathcal{P}_o({}^s\!E,c_0)=\mathcal{P}^r_o({}^s\!E,F)\) for every \(AM\)-space \(F\). \((3)\) \(\mathcal{P}_o({}^s\!E,c_0)=\mathcal{P}^r_o({}^s\!E,c_0)\). \((4)\) \(\mathcal{P}_o({}^s\!E,c_0)\equiv\mathcal{P}_o^r({}^s\!E,c_0)\). \((5)\) \(E\) is atomic and order continuous.
Theorem 4.3.For a pair of Banach lattices \(E\) and \(F\) the following are equivalent: \((1)\) \(\mathcal{P}_o^r({}^s\!E,F)\) is a vector lattice and the regular norm \(\|\cdot\|_r\) on \(\mathcal{P}_o^r({}^s\!E,F)\) is order continuous. \((2)\) Each positive orthogonally additive \(s\)-homogeneous polynomial from \(E\) to \(F\) is \(L\)- and \(M\)-weakly compact.
Theorem 4.6. Let \(E\) and \(F\) be Banach lattices. Assume that \(F\) has the positive Schur property and \(E\) is \(s\)-convex for some \(s\in\mathbb{N}\). Then the following are equivalent: \((1)\) \((\mathcal{P}_o^r({}^s\!E,F),\|\cdot\|_r)\) is a \(K\!B\)-space. \((2)\) The regular norm \(\|\cdot\|_r\) on \(\mathcal{P}_o^r({}^s\!E,F)\) is order continuous. \((3)\) \(E\) does not contain any sulattice lattice isomorphc to \(l^s\).
For citation: Kusraeva, Z. A. and Siukaev, S. N. Some Properties of Orthogonally Additive Homogeneous Polynomials on Banach Lattices, Vladikavkaz Math. J., 2020, vol. 22, no. 4, pp. 92-103 (in Russian). DOI 10.46698/d4799-1202-6732-b
1. Dineen, S. Complex Analysis on Infinite Dimensional Spaces,
Berlin, Springer, 1999.
2. Sundaresan, K. Geometry of Spaces of Homogeneous Polynomials on Banach Lattices,
Applied Geometry and Discrete Mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci.,
Providence, R.I., Amer. Math. Soc., 1991, pp. 571-586.
3. Grecu, B. C. and Ryan, R. A. Polynomials on Banach Spaces with Unconditional Bases,
Proceedings of the American Mathematical Society,
2005, vol. 133, no. 4, pp. 1083-1091.
DOI: 10.1090/S0002-9939-04-07738-X.
4. Kusraeva, Z. A. Orthogonally Additive Polynomials on Vector Lattices,
Thesis, Sobolev Institute of Mathematics of the Siberian Branch of RAS, Novosibirsk, 2013.
5. Linares, P. Orthogonal Additive Polynomials and Applications
Thesis, Departamento de Analisis Matematico,
Universidad Complutense de Madrid, 2009.
6. Loane, J. Polynomials on Riesz Spaces,
Thesis, Department of Mathematics National Univercity of Ireland, Galway, 2007.
7. Ben Amor, F. Orthogonally Additive Homogenous Polynomials on Vector Lattices,
Communications in Algebra, 2015, vol. 43, no. 3, pp. 1118-1134.
DOI: 10.1080/00927872.2013.865038.
8. Benyamini, Y., Lassalle, S. and Llavona, J. G. Homogeneous Orthogonally Additive
Polynomials on Banach Lattices, Bulletin of the London Mathematical Society, 2006, vol. 38, no. 3, pp. 459-469.
DOI: 10.1112/s0024609306018364.
9. Bu, Q. and Buskes, G. Polynomials on Banach Lattices and Positive Tensor Products,
Journal of Mathematical Analysis and Applications, 2012, vol. 388, no. 2, pp. 845-862.
DOI: 10.1016/j.jmaa.2011.10.001.
10. Cruickshank, J., Loane, J. and Ryan, R. A. Positive Polynomials on Riesz Spaces,
Positivity, 2017, vol. 21, no. 3, pp. 885-895.
DOI: 10.1007/s11117-016-0439-8.
11. Ibort, A., Linares, P. and Llavona, J. G. A Representation Theorem
for Orthogonally Additive Polynomials on Riesz Spaces, Revista Matematica Complutense,
2012, vol. 25, no. 1, pp. 21-30. DOI: 10.1007/s13163-010-0053-4.
12. Kusraev, A G. and Kusraeva, Z. A. Monomial Decomposition of Homogeneous
Polynomials in Vector Lattices, Advances in Operator Theory,
2019, vol. 4, no. 2, pp. 428-446. DOI: 10.15352/aot.1807-1394.
13. Kusraeva, Z. A. Representation of Orthogonally Additive Polynomials,
Siberian Mathematical Journal, 2011, vol. 52, no. 2, pp. 248-255.
DOI: 10.1134/S003744661102008X.
14. Abramovich, Y. A. and Aliprantis, C. D. Positive Operators,
Handbook of the Geometry of Banach Spaces, vol. 1,
eds. W. B. Johnson and J. Lindenstrauss, Elsevier, 2001, pp. 85-122.
15. Wickstead, A. W. Regular Operators Between Banach Lattices,
Positivity, Trends in Mathematics, Basel, Birkhauser, 2007, pp. 255-279.
DOI: 10.1007/978-3-7643-8478-4_9.
16. Aliprantis, C. D. and Burkinshaw, O. Positive Operators,
London etc., Academic Press Inc., 1985, xvi+367 p.
17. Meyer-Nieberg, P. Banach Lattices, Berlin etc., Springer-Verlag, 1991.
18. Lindenstrauss, J. and Tzafriri L. Classical Banach Spaces, vol. 2, Function Spaces,
Berlin etc., Springer-Verlag, 1979, 243 p.
19. Boulabiar, K. and Buskes, G. Vector Lattice Powers: \(f\)-Algebras and Functional Calculus,
Communications in Algebra, 2006, vol. 34, no. 4, pp. 1435-1442.
DOI: 10.1080/00927870500454885.
20. Kusraeva, Z. A. Powers of Quasi-Banach Lattices and Orthogonally Additive Polynomials,
Journal of Mathematical Analysis and Applications,
2018, vol. 458, no. 1, pp. 767-780. DOI: 10.1016/j.jmaa.2017.09.019.
21. Kusraeva, Z. A. On Compact Domination of Homogeneous Orthogonally Additive Polynomials,
Siberian Mathematical Journal, 2016, vol. 57, no. 3, pp. 519-524.
DOI: 10.1134/S0037446616030137.
22. Walsh, B. On Characterising Kothe Sequence Spaces as Vector Lattices,
Mathematische Annalen, 1968, vol. 175, pp. 253-256.
DOI: 10.1007/BF02063211.
23. Van Rooij, A. C. M. When do the Regular Operators Between Two Riesz Spaces Form a
Riesz Space? Technical Report 8410, Nijmegen, Catholic University, 1984.
24. Wnuk, W. Characterization of Discrete Banach Lattices with Order Continuous Norms,
Proceedings of the American Mathematical Society,
1988, vol. 104, no. 1, pp. 197-200.
DOI: 10.1090/S0002-9939-1988-0958066-0.
25. Hong-Yun Xiong. On Whether or Not \(\mathcal{L (E, F)}=\mathcal{L ^r(E,F)}\)
for Some Classical Banach Lattices \(E\) and \(F\),
Indagationes Mathematicae (Proceedings), 1984, vol. 87, no. 3, pp. 267-282.
DOI: 10.1016/1385-7258(84)90027-1.
26. Zi li Chen, Ying Feng and Jin Xi Chen. The Order Continuity
of the Regular Norm on Regular Operator Spaces,
Abstract and Applied Analysis, 2013, vol. 2013, article ID 183786, 6 p.
DOI: 10.1155/2013/183786.
27. Chen, Z. L. On the Order Continuity of the Regular Norm,
Proceedings Positivity IV - Theory and Applications,
Dresden, 2006, pp. 45-51.
28. Schwarz, H.-V. Banach Lattices and Operators,
Leipzig, Teubner, 1984.
29. Dodds, P. G. and Fremlin, D. H. Compact Operators in Banach Lattices,
Israel Journal of Mathematics, 1979, vol. 34, no. 4, pp. 287-320.
DOI: 10.1007/BF02760610.