Abstract: The theory of the basic quantum calculus (that is, the basic \(q\)-calculus) plays important roles in many diverse areas of the engineering, physical and mathematical science. Making use of the basic definitions and concept details of the \(q\)-calculus, Govindaraj and Sivasubramanian [10] defined the Salagean type \(q\)-difference (\(q\)-derivative) operator. In this paper, we introduce a certain subclass of analytic functions with complex order in the open unit disk by applying the Salagean type \(q\)-derivative operator in conjunction with the familiar principle of subordination between analytic functions. Also, we derive some geometric properties such as sufficient condition and several subordination results for functions belonging to this subclass. The results presented here would provide extensions of those given in earlier works.
For citation: Aouf, M. K. and Seoudy, T. M. Some Subordination Results for Certain Class with Complex Order Defined by Salagean Type \(q\)-Difference Operator,
Vladikavkaz Math. J., 2020, vol. 22, no. 4, pp. 7-15.
DOI 10.46698/q5183-3412-9769-d
1. Blboaca, T. Differential Subordinations and
Superordinations, New Results, Cluj-Napoca, House of Scientific Boook Publ.,
2005.
2. Miller, S. S. and Mocanu, P. T. Differential Subordinations.
Theory and Applications, Series on Monographs and Textbooks in Pure and
Appl. Math., no. 255, New York, Marcel Dekker Inc., 2000, 480 p.
DOI: 10.1201/9781482289817.
3. Annaby, M. H. and Mansour, Z. S. q -Fractional Calculus and
Equations, Lecture Notes in Mathematics, vol. 2056, Berlin, Springer-Verlag, 2012.
DOI: 10.1007/978-3-642-30898-7.
4. Aouf, M. K. and Seoudy, T. M. Convolution Properties for
Classes of Bounded Analytic Functions with Complex Order Defined by
q -Derivative Operator, Revista de la Real Academia de Ciencias Exactas,
Fisicas y Naturales. Serie A. Matematicas, 2019, vol. 113,
no. 2, pp. 1279-1288. DOI: 10.1007/s13398-018-0545-5.
5. Aral, A., Gupta, V. and Agarwal, R. P. Applications
of q -Calculus in Operator Theory, New York, Springer, 2013.
DOI: 10.1007/978-1-4614-6946-9.
6. Gasper, G. and Rahman, M. Basic Hypergeometric Series,
Cambridge, Cambridge University Press, 1990, xx+287 p.
7. Jackson, F. H. On q -Functions and a Certain Difference
Operator, Transactions of the Royal Society of Edinburgh, 1908, vol. 46, pp. 253-281.
DOI: 10.1017/S0080456800002751.
8. Seoudy, T. M. and Aouf, M. K. Convolution Properties for
Certain Classes of Analytic Functions Defined by q -Derivative Operator,
Abstract and Applied Analysis, vol. 2014, art. ID 846719, pp. 1-7.
DOI: 10.1155/2014/846719.
9. Seoudy, T. M. and Aouf, M. K. Coefficient Estimates of New
Classes of q -Starlike and q -Convex Functions of Complex Order,
Journal of Mathematical Inequalities, 2016, vol. 10, no. 1, pp. 135-145.
DOI: 10.7153/jmi-10-11.
10. Govindaraj, M. and Sivasubramanian, S. On a Class of Analytic
Functions Related to Conic Domains Involving q -Calculus, Analysis Mathematica, 2017,
vol. 43, no. 3, pp. 475-487. DOI: 10.1007/s10476-017-0206-5.
11. Salagean, G. S. Subclasses of Univalent Functions, Lecture
Notes in Mathematics, vol. 1013, Berlin, Springer-Verlag, 1983, pp. 362-372.
DOI: 10.1007/BFb0066543.
12. Aouf, M. K. and Srivastava, H. M. Some Families of Starlike
Functions with Negative Coefficients, Journal of Mathematical
Analysis and Applications, 1996, vol. 203, no. 3, pp. 762-790. DOI: 10.1006/jmaa.1996.0411.
13. Sivasubramanian, S., Mohammed, A. and Darus, M. Certain
Subordination Properties for Subclasses of Analytic Functions Involving
Complex Order, Abstract and Applied Analysis, vol. 2011, art. ID 375897, pp. 1-8.
DOI: 10.1155/2011/375897.
14. Aouf, M. K. Subordination Properties for a Certain Class of
Analytic Functions Defined by the Salagean Operator, Applied Mathematics Letters, 2009,
vol. 22, no. 10, pp. 1581-1585. DOI: 10.1016/j.aml.2009.05.005.
15. Wilf, H. S. Subordinating Factor Sequence for Convex Maps of
the Unit Circle, Proceedings of the American Mathematical Society, 1961, vol. 12, pp. 689-693.
DOI: 10.1090/S0002-9939-1961-0125214-5.
16. Attiya, A. A. On Some Application of a Subordination Theorems,
Journal of Mathematical Analysis and Applications, 2005, vol. 311, no. 2, pp. 489-494. DOI: 10.1016/j.jmaa.2005.02.056.
17. Srivastava, H. M. and Attiya, A. A. Some Subordination Results
Associated with Certain Subclass of Analytic Functions,
Journal of Inequalities in Pure and Applied Mathematics, 2004, vol. 5, no. 4, pp. 1-6.
18. Aouf, M. K. and Mostafa, A. O. Some Subordination Results for
Classes of Analytic Functions Defined by the Al-Oboudi-Al-Amoudi, Archiv der Mathematik, 2009, vol. 92, pp. 279-286. DOI: 10.1007/s00013-009-2984-x.
19. Aouf, M. K., Shamandy, A. A., Mostafa, O. and El-Emam, F.
Subordination Results Associated with \(\beta\) -Uniformly Convex and Starlike
Functions, Proceedings of the Pakistan Academy of Sciences,
2009, vol. 46, no. 2, pp. 97-101.
20. Aouf, M. K., Shamandy, A., Mostafa, A. O. and Adwan, E. A.
Subordination Results for Certain Class of Analytic Functions Defined by
Convolution, Rendiconti del Circolo Matematico di Palermo, 2011, vol. 60, pp. 255-262.
DOI: 10.1007/s12215-011-0048-0.
21. Aouf, M. K. Shamandy, A. Mostafa, A. O. and Adwan, E. A.
Subordination Theorem for Analytic Functions Defined by Convolution,
Complex Analysis and Operator Theory, 2013, vol. 7, pp. 1117-1126.
DOI: 10.1007/s11785-011-0171-0.
22. Bulut, S. and Aouf, M. K. Subordination Properties for a
Certain Class of Analytic Functions with Complex Order, Le Matematiche, 2014,
vol. 69, no. 2, pp. 117-128.