Abstract: The objective of this paper is to obtain an upper bound (not sharp) to the third order Hankel determinant for certain subclass of multivalent (\(p\)-valent) analytic functions, defined in the open unit disc \(E\). Using the Toeplitz determinants, we may estimate the Hankel determinant of third kind for the normalized multivalent analytic functions belongng to this subclass. But, using the technique adopted by Zaprawa [1], i.e., grouping the suitable terms in order to apply Lemmas due to Hayami [2], Livingston [3] and Pommerenke [4], we observe that, the bound estimated by the method adopted by Zaprawa is more refined than using upon applying the Toeplitz determinants.
Keywords: \(p\)-valent analytic function, upper bound, third Hankel determinant, positive real function.
For citation: Vamshee Krishna, D. and Shalini, D. Hankel Determinant of Third Kind for Certain Subclass of Multivalent Analytic Functions, Vladikavkaz Math. J., 2019, vol. 21, no. 3, pp. 43-48.
DOI 10.23671/VNC.2020.1.57538
1. Zaprawa, P.Third Hankel Determinants for Subclasses of Univalent Functions, Mediterranean Journal of Mathematics, 2017, vol. 14, no. 1, article 19. DOI: 10.1007/s00009-016-0829-y.
2. Hayami, T. and Owa, S. Generalized Hankel Determinant for Certain Classes, International Journal of Mathematical Analysis, 2010, vol. 4, no. 52, pp. 2573-2585.
3. Livingston, A. E. The Coefficients of Multivalent Close-to-Convex Functions,
Proceedings of the American Mathematical Society, 1969, vol. 21, no. 3, pp. 545-552.
4. Pommerenke, Ch. Univalent Functions, Gottingen, Vandenhoeck and Ruprecht, 1975.
5. De Branges de Bourcia Louis. A Proof of Bieberbach Conjecture, Acta Math., 1985, vol. 154, no. 1-2, pp. 137-152.
6. Pommerenke, Ch. On the Coefficients and Hankel Determinants
of Univalent Functions, Journal of the London Mathematical Society,
1966, vol. 41(s-1), pp. 111-122.
7. Janteng, A., Halim, S. A. and Darus, M. Hankel Determinant for Starlike and Convex Functions, International Journal of Mathematical Analysis, 2007, vol. 1, no. 13, pp. 619-625.
8. Janteng, A., Halim S. A. and Darus M. Coefficient Inequality for a Function Whose Derivative has a Positive Real Part, Journal of Inequalities in Pure and Applied Mathematics, vol. 7, no. 2, article 50.
9. Lee, S. K., Ravichandran, V. and Supramaniam, S. Bounds for the Second Hankel
Determinant of Certain Univalent Functions, Journal of Inequalities and Applications, 2013, article 281. DOI: 10.1186/1029-242X-2013-281.
10. Vamshee Krishna, D. Coefficient Inequality for Certain p-Valent Analytic Functions, Rocky Mountain Journal of Mathematics, 2014, vol. 44, no. 6, pp. 1941-1959.
11. Babalola, K. O. On H3(1) Hankel Determinant for Some Classes of Univalent Functions, Inequality Theory and Applications / ed. Y. J. Cho, J. K. Kim, S. S. Dragomir, New York, Nova Science Publishers, 2010, vol. 6, pp. 1-7.
12. Raza, M. and Malik, S. N. Upper Bound of Third Hankel Determinant for a Class of
Analytic Functions Related with Lemniscate of Bernoulli, Journal of Inequalities and Applications, 2013, article 412. DOI: 10.1186/1029-242X-2013-412.
13. Sudharsan, T. V., Vijayalakshmi, S. P. and Stephen, B. A. Third Hankel Determinant for a Subclass of Analytic Functions, Malaya Journal of Matematik, 2014, vol. 2, no. 4, pp. 438-444.
14. Bansal, D., Maharana, S. and Prajapat, J. K. Third Order Hankel Determinant for Certain Univalent Functions, Journal of the Korean Mathematical Society, 2015, vol. 52, no. 6, pp. 1139-1148.
15. Orhan, H. and Zaprawa, P. Third Hankel Determinants for Starloke and Convex Funxtions of Order Alpha, Bulletin of the Korean Mathematical Society, 2018, vol. 55, no. 1, pp. 165-173.
16. Kowalczyk, B., Lecko, A. and Sim, Y. J. The Sharp Bound for the Hankel Determinant of the Third Kind for Convex Functions, Bulletin of the Australian Mathematical Society, 2018, vol. 97, no. 3, pp. 435-445. DOI: 10.1017/S0004972717001125.
17. Lecko, A., Sim, Y. J. and Smiarowska, B. The Sharp Bound of the Hankel Determinant of the Third Kind for Starlike Functions of Order 1/2, Complex Analysis and Operator Theory, 2019, vol. 13, no. 5, pp. 2231-2238. DOI: 10.1007/s11785-018-0819-0.
18. Cho, N. E., Kowalczyk B., Kwon, O. S. at al. The Bounds of Some Determinants for Starlike Functions of Order Alpha, Bulletin of the Malaysian Mathematical Sciences Society, 2018, vol. 41, no. 1, pp. 523-535. DOI: 10.1007/s40840-017-0476-x.
19. Vamshee Krishna, D. and Shalini, D. Bound on H3(1) Hankel Determinant for Pre-Starlike Functions of Order α, Proyecciones Journal of Math., 2018, vol. 37, no. 2, pp. 305-315. DOI: 10.4067/S0716-09172018000200305.
20. MacGregor, T. H. Functions Whose Derivative Have a Positive Real Part, Transactions of the American Mathematical Society, 1962, vol. 104, no. 3, pp. 532-537. DOI: 10.1090/S0002-9947-1962-0140674-7.
21. Kilic, O. O. Sufficient Conditions for Subordination of Multivalent Functions, Journal of Inequalities and Applications, 2008, article ID 374756. DOI: 10.1155/2008/374756.
22. Duren, P. L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, New York, Springer-Verlag, 1983.
23. Libera, R. J. and Zlotkiewicz, E. J. Coefficient Bounds for the Inverse of a Function with Derivative in P, Proceedings of the American Mathematical Society, 1983, vol. 87, no. 2, pp. 251-257. DOI: 10.1090/S0002-9939-1983-0681830-8.
24. Libera, R. J. and Zlotkiewicz E. J. Early Coefficients of the Inverse of a Regular Convex Function, Proceedings of the American Mathematical Society, 1982, vol. 85, no. 2, pp. 225-230. DOI: 10.1090/S0002-9939-1982-0652447-5.