Abstract: We pose the question of explicit algebraic representation for Bernstein polynomials. The general statement of the problem on an arbitrary interval \([a,b]\) is briefly discussed. For completeness, we recall Wigert formulas for the polynomials coefficients on the standard interval \([0,1]\). However, the focus of the paper is the case of the symmetric interval \([-1,1]\), which is of fundamental interest for approximation theory. The exact expressions for the coefficients of Bernstein polynomials on \([-1,1]\) are found. For the interpretation of the results we introduce a number of new numerical objects named Pascal trapeziums. They are constructed by analogy with a classical triangle, but with their own "initial" and "boundary" conditions. The elements of Pascal trapeziums satisfy various relations which remind customary combinatorial identities. A~systematic research on such properties is fulfilled, and summaries of formulas are given. The obtained results are applicable for the study of the behavior of the coefficients in Bernstein polynomials on \([-1,1]\). For example, it appears that there exists a universal connection between two coefficients \(a_{2m,m}(f)\) and \(a_{m,m}(f)\), and this is true for all \(m\in\mathbb N\) and for all functions \(f\in C[-1,1]\). Thus, it is set up that the case of symmetric interval \([-1,1]\) is essentially different from the standard case of \([0,1]\). Perspective topics for future research are proposed. A~number of this topics is already being studied.
For citation: Petrosova, M. A., Tikhonov, I. V. and Sherstyukov, V. B. Algebraic Representation for Bernstein Polynomials on the Symmetric Interval and Combinatorial Relations, Vladikavkaz Math. J., 2019, vol. 21, no. 3, pp. 62-86 (in Russian). DOI 10.23671/VNC.2019.3.36462
1.Lorentz, G. G. Bernstein Polynomials, Toronto, Univ. of Toronto Press, 1953, x+130 p.
2. Videnskij, V. S. Mnogochleny Bernshtejna. Uchebnoe posobie k speckursu [Bernstein Polynomials. Textbook for the Special Course], Leningrad, LSPI n.a. A. I. Herzen, 1990, 64 p. (in Russian).
3. Natanson, I. P. Konstruktivnaya teoriya funkcij [Constructive Theory of Functions], Moscow-Leningrad, GITTL, 1949, 688 p. (in Russian).
4. Korovkin, P. P. Linejnye operatory i teoriya priblizhenij [Linear Operators and the Theory of Approximation], Moscow, Fizmatgiz,
1959, 212 p. (in Russian).
5. Davis, P. J. Interpolation and Approximation, N.Y., Dover, 1975, xvi+394 p.
6. DeVore, R. A. and Lorentz, G. G. Constructive Approximation , Berlin-Heidelberg-N.Y.,
Springer-Verlag, 1993, x+450 p.
7. Phillips, G. M. Interpolation and Approximation by Polynomials, N.Y.-Berlin-Heidelberg, Springer, 2003, xiv+312 p.
8. Tikhonov, I. V., Sherstyukov, V. B. and Petrosova, M. A. Bernstein Polynomials: the Old and the New, Matematicheskij forum. T. 8. Ch. 1.
Issledovaniya po matematicheskomu analizu (Itogi nauki. Yug Rossii) [Math. forum. Vol. 8. Part. 1.Studies in Mathematical Analysis (Results of Science. South of Russia)], Vladikavkaz, SMI VSC RAS & RNO-A, 2014, pp. 126-175 (in Russian).
9. Tikhonov, I. V., Sherstyukov, V. B. and Petrosova, M. A. Gluing rule for Bernstein polynomials on the symmetric interval,
Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 2015, vol. 15, no. 3, pp. 288-300 (in Russian). DOI: 10.18500/1816-9791-2015-15-3-288-300.
10. Wigert S. Reflexions sur le polynome d'approximation
\(\sum_{\nu=0}^n\binom{ n }{\nu}\varphi\left(\frac{\nu}{n}\right)x^\nu (1-x)^{n-\nu}\), Arkiv for Matematik, Astronomi och Fysik , 1927, Bd. 20, Hafte 2, S. 1-15.
11. Dzyadyk, V. K. Vvedenie v teoriyu ravnomernogo priblizheniya funkcij polinomami [Introduction to the Theory of Uniform Approximation of Functions by Polynomials], Moscow, Nauka, 1977, 512 p. (in Russian).
12. Graham, R. L., Knuth, D. E. and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, Boston,
Addison-Wesley Longman Publ. Co., Inc., 1994, 672 p.
13. Tikhonov, I. V. and Sherstyukov, V. B. On the Behavior of the Coefficients of Bernstein Polynomials as Algebraic Notation on a Standard Interval,
Materialy nauchnoj konferencii. Gercenovskie chteniya-2015. Nekotorye aktual'nye problemy sovremennoj matematiki i mat. obrazovaniya [Materials of the Sci. Conf. Herzen Readings-2015. Some Current Issues
Modern Mathematics and Math. Education], Saint Petersburg, Publishing House of RSPU n.a. A. I. Herzen, 2015, pp. 115-121 (in Russian).
14. Tikhonov, I. V., Sherstyukov, V. B. and Petrosova, M. A. Explicit Expressions for Coefficients Bernstein Polynomials in Algebraic Notation on a Symmetric Interval, Materialy nauchnoj konferencii. Gercenovskie chteniya-2015. Nekotorye aktual'nye problemy sovremennoj matematiki i mat. obrazovaniya [Materials of the Sci. Conf. Herzen Readings-2015. Some Current Issues Modern Mathematics and Math. Education], Saint Petersburg, Publishing House of RSPU n.a. A. I. Herzen, 2015, pp. 121-124 (in Russian).
15. Petrosova, M. A., Tikhonov, I. V. and Sherstyukov, V. B. The Case of a Symmetric Interval in the Theory of Classical Bernstein Polynomials, Sistemy komp'yuternoj matematiki i ih prilozheniya.
Vyp. 15. Materialy XV Mezhdunarodnoj nauchnoj konferencii [Computer Mathematics Systems and Their Applications.
Vol. 15. Materials of the XV International Sci. Conf.], Smolensk, Smolensk State Univ., 2014, pp. 184-186 (in Russian).
16. Petrosova, M. A., Tikhonov, I. V. and Sherstyukov, V. B. Combinatorial Relations Related with Bernstein Polynomials on a Symmetric Interval, Sistemy komp'yuternoj matematiki i ih prilozheniya.
Vyp. 17. Materialy XV Mezhdunarodnoj nauchnoj konferencii [Computer Mathematics Systems and Their Applications.
Vol. 17. Materials of the XVII International Sci. Conf.], Smolensk, Smolensk State Univ., 2016, pp. 177-182 (in Russian).
17. Stafney, J. D. A Permissible Restriction on the Coefficients
in Uniform Polynomial Approximation to \(C[0,1]\),
Duke Math. J., 1967, vol. 34, no. 3, pp. 393-396.
18. Roulier, J. A. Permissible Bounds on the Coefficients
of Approximating Polynomials, J. Approx. Theory , 1970, vol. 3, no. 2, pp. 117-122.
19. GurariiM, V. I. and. Meletidi, A Functional Analysis and Its Applications,
Funct. Anal. Appl., 1971, vol. 5, no. 1, pp. 60-62. DOI: 10.1007/BF01075850.
20. Norlund, N. E. Vorlesungen uber Differenzenrechnung, Berlin, Springer Verlag, 1924, ix+551 p.
21. Tikhonov, I. V., Sherstyukov, V. B. and Petrosova, M. A. New Research,
Associated with the Algebraic Representation of Bernstein Polynomials on a Symmetric Interval, Sistemy komp'yuternoj matematiki i ih prilozheniya.
Vyp. 19. Materialy XIX Mezhdunarodnoj nauchnoj konferencii [Computer Mathematics Systems and Their Applications.
Vol. 19. Materials of the XIX International Sci. Conf.], Smolensk, Smolensk State Univ., 2018, pp. 336-347 (in Russian).
22. Feinsilver P., Kocik J. Krawtchouk Polynomials and Krawtchouk Matrices,
Recent Advances in Applied Probability, Eds.: Baeza-Yates R., Glaz J., Gzyl H., Husler J., Palacios J. L., Boston, MA,
Springer, 2005, pp. 115-141.
23. Ivchenko, G. I., Medvedev, Yu. I. and Mironova, V. A. Analysis of the Spectrum of Random Symmetric Boolean Functions,
Mat. Vopr. Kriptogr., 2013, vol. 4, no. 1, pp. 59-76 (in Russian). DOI: 10.4213/mvk73.
24. Ivchenko, G. I., Medvedev, Yu. I. and Mironova, V. A. Krawtchouk Polynomials and their Applications in Cryptography and Coding Theory, Mat. Vopr. Kriptogr., 2015, vol. 6, no. 1, pp. 33-56 (in Russian). DOI: 10.4213/mvk150.