Address: Vatutina st. 53, Vladikavkaz,
362025, RNO-A, Russia
Phone: (8672)23-00-54
E-mail: rio@smath.ru
Dear authors!
Submission of all materials is carried out only electronically through Online Submission System in
personal account.
DOI: 10.23671/VNC.2019.1.27656
Asymptotic Lines on the Pseudo-Spherical Surfaces
Kostin, A. V.
Vladikavkaz Mathematical Journal 2019. Vol. 21. Issue 1.
Abstract: Consider the three-dimensional extended Lobachevsky space. In a proper area of Lobachevsky space take the `complete' pseudosphere, that is, a surface of rotation of a straight line around a given parallel straight line. One part of it is embedded into Euclidean space in the form of the Beltrami-Minding funnel, the other one into three-dimensional Minkowski space as an analogue of the pseudosphere in this space. The interpretations of imaginary asymptotic lines on this pseudospherical surface with the Lobachevsky metric in Minkowski space are considered. Imaginary asymptotic lines on the pseudo-Euclidean continuation of the pseudosphere can be interpreted as real asymptotic lines on the surface of constant curvature with indefinite metric. These surfaces are other pseudo-Euclidean analogs of the Beltrami-Minding pseudosphere. The properties of the asymptotic lines on the pseudospheres with de Sitter metric in the three-dimensional Minkowsky space are studied. The considered properties of asymptotic lines on pseudospheres of pseudo-Euclidean space (Minkowski space) are similar to that of asymptotic lines on the Beltrami-Minding pseudosphere in Euclidean space. Areas of quadrangles of the asymptotic net on a surface of constant negative curvature in Euclidean space can be found by the Hazzidakis formula. These results are transferred to surfaces of constant curvature with indefinite metric in Minkowski space.
For citation: Kostin, A. V. Asymptotic Lines on the Pseudo-Spherical Surfaces,
Vladikavkaz Math. J., 2019, vol. 21, no. 1, pp. 16-26 (in Russian). DOI 10.23671/VNC.2019.1.27656
1. Minding, F. Wie sich entscheiden lasst, ob zwei gegebene krumme Flachen
auf einander abwickelbar sind oder nicht; nebst Bemerkungen uber die Flachen von unveranderlichem Krummungsmasse, Journal fur die Reine und Angewandte Mathematik, 1839, vol. 1839, no. 19, pp. 370-387. DOI: 10.1515/crll.1839.19.370.
2. Blanusha, D. {\(C^\infty\)-Isometric Imbeddings of the Hiperbolic Plane and of Cylinders with Hiperbolic Metric in Spherical Spaces, Annali di Matematica Pura ed Applicata, 1962, vol. 57, pp. 321-337. DOI: 10.1007/BF02417747.
3. Blanusha, D. {\(C^\infty\)-Isometric Imbeddings of Cylinders with Hyperbolic Metric in Euclidean 7-Space, Glas. Mat.-Fiz. i Astron., 1956, vol. 11, no. 3-4, pp. 243-246.
4. Rosenfeld, B. A. Neyevklidovy prostranstva [Non-Euclidean Space], Moscow, Nauka, 1969, 548 p. (in Russian).
5. Hesse, L. O. Uber ein ubertragungsprinzip, Journal fur die Reine und Angewandte Mathematik, 1866, vol. 66, pp. 15-21. DOI: 10.1515/crll.1866.66.15.
6. Tchebychev, P. L. Sur la coupe de vetements, Association Francaise pour l'Avancement de Sciences. Congres de Paris, 1878, pp. 154-155.
7. Chebyshev, P. L. On the Cutting of Garments, Uspekhi Mat. Nauk, 1946, vol. 1, no. 2(12), pp. 38-42 (in Russian).
8. Hazzidakis, J. N. Uber einige Eigenschaften der Flachen mit konstantem Krummungsmasz, Journal fur die Reine und Angewandte Mathematik, 1880, vol. 88, pp. 68-73. DOI: 10.1515/crll.1880.88.68.
9. Hilbert, D. Uber Flachen von konstanten Gau\(\beta\)scher Krummung, Trans. Amer. Math. Soc., 1901, vol. 2, pp. 87-99.
10. Shirokov, P. A. Interpretation and Metric of Quadratic Geometries, Izbrannyye raboty po geometrii [Selected Works on Geometry], Kazan, 1966, pp. 15-179 (in Russian).
11. Kostin, A. V. and Sabitov, I. K. Smarandache Theorem in Hyperbolic Geometry, Journal of Mathematical Physics, Analysis, Geometry, 2014, vol. 10, no. 2, pp. 221-232. DOI: 10.15407/mag10.02.221.
12. Poznyak, E. G. and Popov A. G. The Geometry of the sine-Gordon Equation, Journal of Mathematical Sciences, 1994, vol. 70, no. 2, pp. 1666-1684. DOI: 10.1007/BF02110595.
13. Chern, S. S. Geometrical Interpretation of sinh-Gordon Equation, Annales Polonici Mathematici, 1981, vol. 39, pp. 63-69. DOI: 10.4064/ap-39-1-63-69.
14. Galeeva, R. F. and Sokolov, D. D. On the Geometric Interpretation of Solutions of Some Nonlinear Equations of Mathematical Physics, Issledovaniya po teorii poverkhnostey v rimanovykh prostranstvakh [Research on the Theory of Surfaces in Riemann Spaces], Leningrad, 1984, pp. 8-22 (in Russian).
15. Klotz-Milnor, T. Harmonic Maps and Classical Surface Theory in Minkowski 3-Space, Trans. Amer. Math. Soc., 1983, vol. 280, no. 1, pp. 161-185. DOI: 10.2307/1999607.
16. Rosenfeld, B. A. and Maryukova, N. E. Surfaces of Constant Curvature and Geometric Interpretation of the Klein-Gordon, sin-Gordon and sinh-Gordon equation, Publications de L'Institut Mathematique, 1997, vol. 61(75), pp. 119-132.
17. Lopez, R. Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space, International Electronic Journal of Geometry, 2014, vol. 7, no. 1, pp. 44-107.
18. Barros, M., Caballero, M. and Ortega, M. Rotational Surfaces in \(L^3\) and Solutions of the nonlinear Sigma Model, Communication in Math. Physics, 2009, vol. 290, no. 2, pp. 437-477. DOI: 10.1007/s00220-009-0850-0.
19. Albujer, A. L. and Caballero, M. Geometric Properties of Same Mean Curvature in \(R^3\) and \(L^3\), Elsevier
Journal of Mathematical Analysis and Applications, 2017, vol. 445, no. 1, pp. 1013-1024. DOI: 10.1016/j.jmaa.2016.07.062.
20. Lopez R. and Kaya S. New examples of maximal surfaces in Lorentz-Minkowski space, Kyushu Journal of Mathematics, 2017, vol. 71, no. 2, pp. 311-327. DOI: 10.2206/kyushujm.71.311.
21. Poznyak, \'{E. G. and Shikin, E. V. Differentsial’naya geometria [Differential Geometry], Moscow, Moscow State Univ. Publ., 1990, 384 p. (in Russian).
22. Vygodskii, M. Ya. Differentsial’naya geometria [Differential Geometry], Moscow-Leningrad, 1949, 512 p. (in Russian).
23. Kostin, A. V. The Regularity of Asymptotic Lines on the de Sitter Pseudosphere, Geometry Days in Novosibirsk - 2012: Abstracts of the Inter. Conf. dedicated to 100th anniversary of A.D. Aleksandrov, Novosibirsk, Sobolev Institute of Mathematics of Siberian Branch of the RAS, 2012, pp. 48-49 (in Russian).
24. Kostin, A. V. and Kostina, N. N. On the Evolutes of some Curves on the Pseudo-Euclidean Plane, Trudy uchastnikov Mejdunarodnoi shkoly-seminara po geometrii i analizu pamyati N.V. Efimova [Proceedings of the Participants of the International School-Seminar on Geometry and Analysis in Memory of N.V. Efimov], Abrau-Durso, 2004, pp. 34-35 (in Russian).
25. Kostin, A. V. On Asymptotic Nets on Pseudospheres, Geometry Days in Novosibirsk - 2014: Abstracts of the Inter. Conf. dedicated to 85th anniversary of academian Yu.G. Reshetnyak, Novosibirsk, Sobolev Institute of Mathematics of Siberian Branch of the RAS, 2014, p. 41 (in Russian).
26. Kostin, A. V. and Kostina, N. N. On the Interpretation of Asymptotic Directions, Proceedings International Youth School-Seminar "Modern Geometry and its Applications", International Scientific Conference "Modern Geometry and its Applications", Kazan, Kazan Univ. Publ., 2017, pp. 75-76 (in Russian).