Abstract: The modified Cauchy problem is investigated for a four-dimensional second order equation of hyperbolic type with spectral parameter and with the Bessel operator. The equation contains a singular differential Bessel operator on all variables. To solve the formulated problem, a generalized Erdelyi-Kober fractional order operator is applied. To solve the problem, a generalized Erdelyi-Kober fractional order operator is applied. A formula is obtained for calculating the high order derivatives of the generalized operator Erdelyi-Kober, that is then used in the study of the problem. We also consider the confluent hypergeometric function of four variables, which generalizes the Humbert function; some properties of this function are proved. Taking into account the proven properties of the Erdelyi-Kober operator and the confluent hypergeometric function, the solution of the modified Cauchy problem is presented in a compact integral form that generalizes the Kirchhoff formula. The obtained formula allows us to see directly the nature of the dependence of the solution on the initial functions and, in particular, to establish the smoothness conditions for the classical solution. The paper also contains a brief historical introduction to differential equations with Bessel operators.
For citation: Karimov Sh. T., Urinov A. K. Solution of the Cauchy Problem for the
Four-Dimensional Hyperbolic Equation with Bessel Operator,
Vladikavkazskij matematicheskij zhurnal [Vladikavkaz Math. J.], vol.
20, no. 2, pp. 57-68. DOI 10.23671/VNC.2018.3.17991
1. Eejler L. Integral'noe ischislenie [Integral Calculus], Moscow,
GIFML, 1958, vol. 3, 447 p.
2. Reimann B. Vercuch Einer Allgemeinen Auffassung der Integration
und Differentiation, Gessammelte Mathematische Werke, Leipzing,
Teubner, 1876, pp. 331-334.
3. Poisson S. D. Memoire sur L'integration des equations Lineaires
aux Differences Partielles, J. l'Ecole Rog. Politechn., 1823, no.
12, pp. 215-248.
4. Darboux G. Lecons sur la Theorie Generale des Surfaces et les
Applications Geometriques du Calcul Infinitesimal, vol. 2, Paris,
Gauthier-Villars, 1915.
5. Trikomi F. O linejnyh uravnenijah smeshannogo tipa [On Linear
Equations of Mixed Type], Moscow-Leningrad, Gostezizdat, 1947, 192
p.
6. Bitcadze A. V. Nekotorye klassy uravnenij v chastnyh proizvodnyh
[Some Classes of Partial Differential Equations], Moscow, Nauka,
1981, 448 p.
7. Smirnov M. M. Vyrozhdajushhiesja jellipticheskie i
giperbolicheskie uravnenija [Degenerate Elliptic and Hyperbolic
Equations], Moscow, Nauka, 1966, 292 p.
8. Nahushev A. M. Zadachi so smeshhenim dlja uravnenij v chastnyh
proizvodnyh [Displacement Problems for Partial Differential
Equations], Moscow, Nauka, 2007, 287 p.
9. Carroll R. W., Showalter R. E. Singular and Degenerate Cauchy
Problems, New York, Academic Press, 1976, 333 p.
10. Salohitdinov M. S., Mirsaburov M. Nelokal'nie zadachi dlja
uravnenij smeshannogo tipa s singuljarnymi kojefficientami [Nonlocal
Problems for Mixed-Type Equations with Singular Coefficients],
Toshkent, Universitet, 2005, 224 p.
11. Weinstein A. On the Wave Equation and the Equation of
Euler-Poisson,Wave Motion and Vibration Theory.Proc. Sympos. Appl.
Math., New York, McGraw-Hill, 1954, vol. 5, pp. 137-147.
12. Young E. C. On a Generalized Euler-Poisson-Darboux Equation,
Journal of Applied Mathematics and Mechanics, 1969, vol. 18, no. 12,
pp. 1167-1175.
13. Kipriyanov I. A., Ivanov L. A. The Cauchy Problem for the
Euler-Poisson-Darboux Equation in a Symmetric Space, Mathematics of
the USSR-Sbornik, 1985, vol. 52, no. 1, pp. 41-51.
14. Tersenov S. A. Vvedenie v teoriju uravnenij, vyrozhdajushhihsja
na granice [Introduction to the Theory of Equations Degenerating at
the Boundary], Novosibirsk, 1973, 144 p.
15. Aldashev S. A. Kraevye zadachi dlja mnogomernyh
giperbolicheskih i smeshannyh uravnenij [Boundary Value Problems for
Multidimensional Hyperbolic and Mixed Equations], Almaty, Izd-vo
"Gylym", 1994, 168 p.
16. Ibragimov N. Kh., Oganesyan A. O. The hierarchy of Huygens
Equations in Spaces with a Non-Trivial Conformal Group, Russian
Math. Surveys, 1991, vol. 46, no. 3, pp. 137-176.
17. Fox D. W. The Solution and Huygens' Principle for a Singular
Cauchy Problem, Journal of Applied Mathematics and Mechanics, 1959,
vol. 8, pp. 197-220.
18. Lyakhov L. N., Polovinkin I. P., Shishkina E. L. Formulas for
the Solution of the Cauchy Problem for a Singular Wave Equation with
Bessel Time Operator, Doklady Mathematics, 2014, vol. 90, no. 3, pp.
737-742.
19. Lowndes J. S. A Generalization of the Erdelyi-Kober Operators,
Proceedings of the Edinburgh Mathematical Society, 1970, vol. 17,
no. 2, pp. 139-148.
20. Urinov A. K., Karimov S. T. Solution of the Cauchy Problem for
Generalized Euler-Poisson-Darboux Equation by the Method of
Fractional Integrals, Progress in Partial Differential Equations,
Springer, Heidelberg, 2013, vol. 44, pp. 321-337. DOI:
10.1007/978-3-319-00125-8_15.
21. Karimov Sh. T. Ob odnom metode reshenija zadachi Koshi dlja
obobshhennogo uravnenija Jejlera-Puassona-Darbu, Uzbekskij
matematicheskij zhurnal, 2013, no. 3, pp. 57-69 (in Russian).
22. Karimov Sh. T. Reshenie zadachi Koshi dlja mnogomernogo
giperbolicheskogo uravnenija s singuljarnymi kojefficientami metodom
drobnyh integralov, Doklady AN RUz, 2013, no. 1, pp. 11-13.
23. Karimov Sh. T. Multidimensional Generalized Erdelyi-Kober
Operator and its Application to Solving Cauchy Problems for
Differential Equations with Singular Coefficients, Fractional
Calculus and Applied Analysis, 2015, vol. 18, no. 4, pp. 845-861.
DOI: 10.1515/fca-2015-0051.
24. Samko S. G., Kilbas A. A., Marichev O. I. Integraly i
proizvodnye drobnogo porjadka i ih prilozhenija [Integrals and
Derivatives of Fractional Order and Their Applications], Minsk,
Nauka i tehnika, 1987, 702 p. (in Russian).
25. Lowndes J. S. An Application of Some Fractional Integrals,
Glasgow Mathematical Journal, 1979, vol. 20, pp. 35-41.
26. Prudnikov A. P., Brychkov Ju. A., Marichev O. I. Integraly i
rjady: Special'nye funkcii [Integrals and series: Special
functions], Moscow, Nauka, 1988, 752 p.
27. Jain R. N. The confluent hypergeometric functions of three
variables, Proceedings of the National Academy of Sciences India,
1966, vol. A36, no. 2, pp. 395-408.