Abstract: We consider the problem of describing the space \(I^\alpha(X)\) of functions representable by the Riesz potential \({I}^\alpha \varphi\) with density \(\varphi\) in the given space \(X.\) It is assumed that \(X\subset \Phi'\), where \(\Phi'\) is the space of distributions over the Lizorkin test function space \(\Phi\), invariant with respect to Riesz integration, and the range \(I^\alpha(X)\) is understood in the sense of distributions. In this general setting, we study the question under what assumptions on the space \(X\) the inclusion of the element \(f\) in to the range \(I^\alpha (X) \) is equivalent to the convergence of the truncated hypersingular integrals \(\mathbb D_\varepsilon^\alpha f\) in the space \(X.\) For this purpose, this question is first investigated in the context of the topology of the space \( \Phi. \) Namely, for any linear subset \(X\) in \(\Phi'\) it is shown that the inclusion of \(f\) into the range \(I^\alpha (X)\) is equivalent to the convergence of truncated hypersingular integrals on the set \(X\) in the topology of the space \(\Phi'\). If \(X\) is a Banach space, the passage from the inclusion into the range to the convergence of truncated hypersingular integrals in the norm is proved up to an additive polynomial term under the assumption that some special convolution is an identity approximation in the space \(X\). It is known that the latter holds for many Banach function spaces and is valid for function spaces \(X\) where the maximal operator is bounded. The inverse passage is proved for the Banach function space \(X\) enjoying the property that the associated space \(X'\) includes the Lizorkin test function space.
Keywords: Riesz potential, space of Riesz potentials, hypersingular integral, distributions, grand Lebesgue space, Lizorkin test functions space, identity approximation, Orlicz space, variable order Lebesgue space
For citation: Samko S. G., Umarkhadzhiev S. M. On a Characterisation of the Space
of Riesz Potential of Functions in Banach Spaces With Some a Priori
Properties. Vladikavkazskij matematicheskij zhurnal [Vladikavkaz
Math. J.], vol. 20, no. 2, pp. 95-108.
DOI 10.23671/VNC.2018.2.14726
1. Samko S. G. Hypersingular Integrals and their Applications,
London-N.Y., Taylor & Francis, 2002, 358+xvii p. (Ser. Analytical
Methods and Special Functions, vol. 5).
2. Rafeiro H., Samko S. Fractional Integrals and Derivatives:
Mapping Properties. Fract. Calc. Appl. Anal., 2016, vol. 19, no. 3,
pp. 580-607. DOI: 10.1515/fca-2016-0032.
3. Stein E. M. The Characterization of Functions Arising as
Potentials. Bull. Amer. Math. Soc., 1961, vol. 67, no. 1, pp.
102-104.
4. Lizorkin P. I. Description of the Spaces \(L_p^r({R^n})\) in Terms
of Singular Difference Integrals. Mathematics of the USSR-Sbornik,
1970, vol. 10, no. 1, pp. 77-89. DOI:
10.1070/SM1970v010n01ABEH001587.
5. Umarkhadzhiev S. M. Description of a Space of Riesz Potentials of
Functions from Grand Lebesgue Space on \(\mathbb{R^n}\). Math. Notes,
2018 (in print).
6. Bennett C., Sharpley R. Interpolation of Operators. Ser. Pure
Appl. Math., vol. 129, Boston, Academic Press Inc., 1988.
7. Stein E. M. Harmonic Analysis: Real-Variable Methods,
Orthogonality and Oscillatory Integrals, Princeton, Princeton Univ.
Press, 1993, xiii+695 p.
8. Umarkhadzhiev S. M. Generalization of a Notion of Grand Lebesgue
Space, Russian Mathematics, 2014, vol. 58, no. 4, pp. 35-43. DOI:
10.3103/S1066369X14040057.
9. Samko S. G., Umarkhadzhiev S. M. Riesz Fractional Integrals in
Grand Lebesgue Spaces, Fract. Calc. Appl. Anal., 2016, vol. 19, no.
3, pp. 608-624. DOI: 10.1515/fca-2016-0033.
10. Samko S. G., Umarkhadzhiev S. M. On Grand Lebesgue Spaces on
Sets of Infinite Measure, Mathematische Nachrichten, 2017, vol. 290,
no. 5-6, pp. 913-919. DOI: 10.1002/mana.201600136.
11. Cruz-Uribe D., Fiorenza A. Variable Lebesgue Spaces:
Foundations and Harmonic Analysis, Birkhauser, 2013, 316 p.
12. Diening L., Harjulehto P., Hasto P., and Ruzicka M. Lebesgue and
Sobolev Spaces with Variable Exponents. Ser. Lecture Notes in Math.,
vol. 2017, Berlin, Springer-Verlag, 2011. DOI:
10.1007/978-3-642-18363-8.
13. Kokilashvili V., Meskhi A., Rafeiro H., and Samko S. Integral
Operators in Non-standard Function Spaces, vol. I. Variable Exponent
Lebesgue and Amalgam Spaces, Birkhaser, 2015, 586 p.
15. Cruz-Uribe D., Fiorenza A., and Neugebauer C. J. The Maximal
Function on Variable \(L^p\)-spaces. Ann. Acad. Scient. Fennicae.
Math., 2003, vol. 28, pp. 223-238.
16. Kerman R., Torchinsky A. Integral Inequalities with Weights for
the Hardy Maximal Function, Stud. Math., 1982, vol. 71, pp. 277-284.
17. Kokilashvili V., Krbec M. Weighted Inequalities in Lorentz and
Orlicz Spaces, Singapore, World Scientific Publ., 1991, 233 p.
18. Chuvenkov A. F. Sobolev-Orlicz Spaces of Fractional Order.
Izvestija vysshih uchebnyh zavedenij. Severo-Kavkazskij region.
Estestvennye nauki [Izvestiya Vuzov. Severo-Kavkazskii Region.
Natural Sciences], 1978, vol. 1, pp. 6-10 (in Russian).
19. Samko S. G. On Spaces of Riesz Potentials. Mathematics of the
USSR-Izvestiya, 1976, vol. 10, no. 5, pp. 1089-1117. DOI:
10.1070/IM1976v010n05ABEH001827.
20. Samko S. G., Kilbas A. A., and Marichev O. I. Fractional
Integrals and Derivatives. Theory and Applications, London-N.\,Y.,
Gordon & Breach. Sci. Publ., 1993, 1012 p.
21. Samko S. G., Umarkhadzhiev S. M. Description of a Space of Riesz
Potentials in Terms of Higher Derivatives. Soviet Mathematics
(Izvestiya VUZ. Matematika), 1980, vol. 24, no. 11, pp. 95-98.
22. Kokilashvili V., Meskhi A., and Samko S. On the Inversion and
Characterization of the Riesz Potentials in the Weighted Lebesgue
Spaces. Memoirs on Differential Equations and Mahematical Physics,
2003, vol. 29, pp. 99-106.
23. Almeida A. Inversion of the Riesz Potential Operator on Lebesgue
Spaces with Variable Exponent. Frac. Calc. Appl. Anal., 2003, vol.
6, no. 3, pp. 311-327.
24. Almeida A., Samko S. Characterization of Riesz and Bessel
Potentials on Variable Lebesgue Spaces. J. Function Spaces and
Appl., 2006, vol. 4, no. 2, pp. 113-144.