Abstract: Various convergences in vector lattices were historically a subject of deep investigation which stems from the begining of the 20th century in works of Riesz, Kantorovich, Nakano, Vulikh, Zanen, and many other mathematicians. The study of the unbounded order convergence had been initiated by Nakano in late 40th in connection with Birkhoff's ergodic theorem. The idea of Nakano was to define the almost everywhere convergence in terms of lattice operations without the direct use of measure theory. Many years later it was recognised that the unbounded order convergence is also rathe useful in probability theory. Since then, the idea of investigating of convergences by using their unbounded versions, have been exploited in several papers. For instance, unbounded convergences in vector lattices have attracted attention of many researchers in order to find new approaches to various problems of functional analysis, operator theory, variational calculus, theory of risk measures in mathematical finance, stochastic processes, etc. Some of those unbounded convergences, like unbounded norm convergence, unbounded multi-norm convergence, unbounded \(\tau\)-convergence are topological. Others are not topological in general, for example: the unbounded order convergence, the unbounded relative uniform convergence, various unbounded convergences in lattice-normed lattices, etc. Topological convergences are, as usual, more flexible for an investigation due to the compactness arguments, etc. The non-topological convergences are more complicated in genelal, as it can be seen on an example of the a.e-convergence. In the present paper we present recent developments in convergence vector lattices with emphasis on related unbounded convergences. Special attention is paid to the case of convergence in lattice multi pseudo normed vector lattices that generalizes most of cases which were discussed in the literature in the last 5 years.
For citation: Dabboorasad A. M., Emelyanov E. Yu. Unbounded Convergence in the
Convergence Vector Lattices: a Survey. Vladikavkazskij
matematicheskij zhurnal [Vladikavkaz Math. J.], vol. 20, no. 2,
pp. 49-56.
DOI 10.23671/VNC.2018.2.14720
1. Gutman A. E., Koptev A. V. Convergence-Preserving Maps and
Fixed-Point Theorems. Math. Notes, 2014, vol. 95, pp. 738-742.
2. Preuss G. Order Convergence and Convergence Almost Everywhere
Revisited. Internat. J. Pure Appl. Math., 2011, vol. 66, pp. 33-51.
3. Aliprantis C. D., Burkinshaw O. Locally Solid Riesz Spaces, N.
Y., Acad. Press, 1978, xii+198 p.
4. Kusraev A. G. Dominated Operators, Dordrecht, Kluwer, 2000,
xiv+446 p.
5. Aydin A., Emelyanov E. Y., Erkursun-Ozcan N., Marabeh M. A. A.
Unbounded \(p\)-Ñonvergence in Lattice-Normed Vector Lattices,
arXiv:1609.05301v3.
6. Aydin A., Emelyanov E. Y., Erkursun-Ozcan N., Marabeh M. A. A.
Compact-Like Operators in Lattice-Normed Spaces. Indag. Math.
(N.S.), 2018, vol. 29, pp. 633-656.
7. Dabboorasad Y. A., Emelyanov E. Y., Marabeh M. A. A.
\(um\)-Topology in Multi-Normed Vector Lattices. Positivity, 2018,
vol. 22, pp. 653-667.
8. Kusraev A. G., Kutateladze S. S. Subdifferentials: Theory and
Applications, N. Y., Kluwer Academic, 1995, x+398 p.
9. Kusraev A. G., Kutateladze S. S. Boolean Valued Analysis,
Dordrecht, Kluwer, 1999, xii+322 p.
10. Kutateladze S. S. Fundamentals of Functional Analysis, N. Y.,
Springer-Verlag, 1996, xiv+276 p.
11. Dabboorasad Y. A., Emelyanov E. Y., Marabeh M. A. A. Order
Convergence In Infinite-Dimensional Vector Lattices is Not
Topological, arXiv:1705.09883.
12. Deng Y., O'Brien M., Troitsky V. G. Unbounded Norm Convergence
in Banach Lattices. Positivity, 2017, vol. 21, pp. 963-974.
13. Gao N., Troitsky V. G., Xanthos F. \(Uo\)-Convergence and its
Applications to Cesaro Means in Banach lattices, Isr. J. Math.,
2017, vol. 220, pp. 649-689.
14. Kandic M., Li H., Troitsky V. G. Unbounded Norm Topology Beyond
Normed Lattices. Positivity, 2018, vol. 22, no. 3, pp. 745-760. DOI:
10.1007/s11117-017-0541-6.
15. Kandic M., Marabeh M. A. A., Troitsky V. G. Unbounded Norm
Topology in Banach Lattices. J. Math. Anal. Appl., 2017, vol. 451,
pp. 259-279.
16. Li H., Chen Z. Some Loose Ends on Unbounded Order Convergence.
Positivity, 2018, vol. 22, pp. 83-90.
17. Emelyanov E. Y., Marabeh M. A. A. Two Measure-Free Versions of
the Brezis-Lieb Lemma. Vladikavkaz Math. J., 2016, vol. 18, no. 1,
pp. 21-25. DOI 10.23671/VNC.2016.1.5930.
18. Gao N., Leung D. H., Xanthos F. Duality for Unbounded Order
Convergence and Applications. Positivity, 2018, vol. 22, no. 3, pp.
711-725.--DOI: 10.1007/s11117-017-0539-0.
19. Marabeh M. A. A. Brezis-Lieb Lemma in Convergence Vector
Lattices. Turkish J. of Math., 2018, vol. 42, pp. 1436-1442. DOI:
10.3906/mat-1708-7.
20. Dabboorasad Y. A., Emelyanov E. Y., Marabeh M. A. A.
\(u\tau\)-Convergence in locally solid vector lattices. Positivity,
2018, to appear. DOI: 10.1007/s11117-018-0559-4.
21. Gorokhova S. G. Intrinsic characterization of the space \(c_0(A)\)
in the class of Banach lattices. Math. Notes, 1996, vol. 60, pp.
330-333.
22. Dales H. G., Polyakov M. E. Multi-Normed Spaces. Dissertationes
Math. (Rozprawy Mat.),2012, vol. 488, pp. 1-165.
23. Aydin A., Gorokhova S. G., Gul H. Nonstandard Hulls of
Lattice-Normed Ordered Vector Spaces. Turkish J. of Math., 2018,
vol. 42, pp. 155-163.
24. Aydin A. Unbounded \(p\tau\)-Convergence in Lattice-Normed Locally
Solid Riesz Spaces, arXiv:1711.00734.
25. Aydin A. Compact Operators with Convergence in Lattice-Normed
Locally Solid Riesz Spaces, arXiv:1801.00919.
26. Emelyanov E. Y., Erkursun-Ozcan N., Gorokhova S. G. Komlos
Properties in Banach Lattices, Acta Mathematica Hungarica, 2018,
vol. 155, no. 2, pp. 324-331. DOI: 10.1007/s10474-018-0852-5.
27. Gao N. Unbounded Order Convergence in Dual Spaces. J. Math.
Anal. Appl., 2014, vol. 419, pp. 347-354.
28. Gao N., Xanthos F. Unbounded Order Convergence and Application
to Martingales Without Probability. J. Math. Anal. Appl., 2014, vol.
415, pp. 931-947.
29. Kandic M., Taylor M. A. Metrizability of Minimal and Unbounded
Topologies, J. Math. Anal. Appl., 2018, vol. 466, no. 1, pp.
144-159. DOI: 10.1016/j.jmaa.2018.05.068.
30. Taylor M. A. Unbounded Topologies and \(uo\)-Convegence in Locally
Solid Vector Lattices, arXiv:1706.01575.
31. Taylor M. A. Completeness of Unbounded Convergences. Proc. Amer.
Math. Soc., 2018, vol. 146, pp. 3413-3423. DOI: 10.1090/proc/14007.
32. Zabeti O. Unbounded Absolute Weak Convergence in Banach
Lattices. Positivity, 2018, vol. 22, pp. 501-505.
33. Ercan Z., Vural M. Towards a Theory of unbounded Locally Solid
Riesz Spaces, arXiv:1708.05288.