Abstract: The purpose of this article is to extend the Abramovich's construction of a maximal normed extension of a normed lattice to quasi-Banach setting. It is proved that the maximal quasi-normed extension \(X^\varkappa\) of a Dedekind complete quasi-normed lattice \(X\) with the weak \(\sigma\)-Fatou property is a quasi-Banach lattice if and only if \(X\) is intervally complete. Moreover, \(X^\varkappa\) has the Fatou and the Levi property provided that \(X\) is a Dedekind complete quasi-normed space with the Fatou property. The possibility of applying this construction to the definition of a space of weakly integrable functions withrespect to a measure taking values from a quasi-Banach lattice is also discussed, since the duality based definition does not work in the quasi-Banach setting.
Keywords: quasi-Banach lattice, maximal quasi-normed extension, Fatou property, Levi property vector measure, space of weakly integrable functions
For citation: Kusraev A. G., Tasoev B. B. Maximal quasi-normed extension of quasi-normed lattices // Vladikavkazskii matematicheskii zhurnal [Vladikavkaz Math. J.], vol. 19, no. 1, pp. 41-50.
DOI 10.23671/VNC.2017.3.7111
1. Abramovich Yu. A. On maximal normed extension of a
semi-ordered normed spaces. Izv. Vyssh. Uchebn. Zaved. Mat., 1970, vol.3, pp. 7-17.
2. Abramovich Y. A. and Aliprantis C. D.
An Invitation to Operator Theory. Providence (R.I.): Amer. Math. Soc,
2002. iv+530 p. (Graduate Stud. in Math., vol. 50).
3. Aliprantis C. D. and Burkinshaw O. Positive
Operators. London etc.: Acad. Press Inc., 1985. xvi+367 p.
4. Calabuig J. M., Delgado O., Juan M. A., and Sanchez Perez E. A. On the Banach lattice
structure of \(L^1_w\) of a vector measure on a \(\delta\)-ring. Collect. Math. 2014, vol. 65, pp. 67-85.
5. Curbera G. P. and Ricker W. J. Vector measures, integration, applications,
Positivity. Basel: Birkhauser, 2007, pp. 127-160 (Trends Math.).
6. Hyers D. H. A note on linear topological spaces. Bull. Amer.
Math. Soc., 1938, vol. 44, ¹ 2, pp. 76-80.
7. Juan A. M. and Sanchez-Perez E. A. Maurey-Rosenthal domination for abstract Banach
lattices. J. Ineq. and Appl., 2013, vol. 213, pp. 1-12.
8. Kalton N. J. Convexity conditions for non-locally convex lattices. Glasgow Math. J., 1984, vol. 25, pp. 141-142.
9. Kalton N. J. Quasi-Banach spaces. Handbook of the Geometry of Banach Spaces
(Eds. W. B. Johnson and J. Lindenstrauss). Amsterdam a.o.: Elsevier, 2003. P. 1118-1130.
10. Kusraev A. G. and Tasoev B. B. Kantorovich-Wright integration
and representation of quasi-Banach lattices. Dokl. Math. 2017, vol. 474, pp. 15-18.
11. Kusraev A. G. and Tasoev B. B. Kantorovich-Wright integration
and representation of vector lattices, J. Math. Anal. Appl. 2017, vol. 455, pp. 554-568.
12. Kusraev A. G. and Tasoev B. B. Kantorovich-Wright
integration and representation of quasi-Banach lattices. J. Math. Anal. Appl. (to appear).
13. Luxemburg W. A. J. and Zaanen A. C. Riesz Spaces.
Vol. 1. Amsterdam-London: North-Holland, 1971. 514 pp.
14. Lewis D. R. On integration and summability in vector spaces. Illinois J.
Math. 1972, vol. 16, pp. 294-307.
15. Maligranda L. Type, cotype and convexity properties of quasi-Banach spaces. Proc.
of the International Symposium on Banach and Function Spaces Kitakyushu. Japan, 2003, pp. 83-120.
16. Masani P. R. and Niemi H. The integration theory of Banach space valued measures and the
Tonelli-Fubini theorems. II. Pettis integration. Adv. Math., 1989, vol. 75, pp. 121-167.
17. Meyer-Nieberg P. Banach Lattices. Berlin etc.: Springer,
1991. xvi+395 p.
18. Okada S., Ricker W. J., and Sanchez-Perez E. A. Optimal Domain and Integral
Extension of Operators Acting in Function Spaces. Basel: Birkhauser, 2008. (Oper. Theory Adv. Appl.,
vol. 180).
20. Sanchez Perez E. A. and Tradacete P. Bartle-Dunford-Schwartz integration for positive
vector measures and representation of quasi-Banach lattices.
J. Nonlin. and Conv. Anal. 2016, vol. 17, no. 2, pp. 387-402.
21. Veksler A. I. On realization of Archimedean \(K\)-lineals. Sib.
Math. J., 1962, vol. 3, no. 1, pp. 7-16.
22. Veksler A. I. The concept of a linear lattice which is normal in itself, and certain applications
of this concept to the theory of linear and linear normed lattices.
Isv. Vuzov. Math., 1966, vol. 4, pp. 13-22.
23. Veksler A. I. Interval completeness and intervally complete normability of
\(KN\)-lineals. Isv. Vuzov. Math., 1970, vol. 4, pp. 36-46.
24. Vulikh B. Z. Introduction to the Theory of Partially Ordered
Spaces. M.: Fizmatgiz, 1961 (in Russian).