Abstract: The representation of the Cauchy problem's solution for a difference equation with variable coefficients and given initial conditions at \(x = 0\) by expanding this solution in a Fourier series on Sobolev polynomials orthogonal on the grid \((0,1,\ldots)\). The representation is based on contraction new polynomials orthogonal on Sobolev and generated by classical Meixner's polynomials. For new polynomials an explicit formula containing Meixner polynomials is obtained. This result allows us to investigate the asymptotic properties of new polynomials orthogonal on Sobolev on the grid \((0,1, \ldots)\) with a given weight. In addition, it allows to solve the problem of the calculation of the polynomials orthogonal on Sobolev, reducing it to use of well known recurrence relations for
classical Meixner polynomials.
Keywords: difference equation, Sobolev orthogonal polynomials, orthogonal on grid Meixner polynomials, discrete functions approximation, orthogonal on equidistant grid mixed series on Meixner polynomials.
For citation: Sharapudinov I. I., Gadzhieva Z. D, Gadzhimirzaev R. M. Difference Equations and Sobolev Orthogonal Polynomials, Generated by Meixner Polynomials. Vladikavkazskij matematicheskij zhurnal [Vladikavkaz Math. J.], vol. 19, no. 1, pp. 58-72. DOI 10.23671/VNC.2017.2.6509
1. Iserles A., Koch P. E., Norsett S. P., Sanz-Serna J. M. On
polynomials orthogonal with respect to certain Sobolev inner
products. J. Approx. Theory. 1991, vol. 65, pp. 151-175.
2. Marcellan F., Alfaro M., Rezola M. L. Orthogonal polynomials on
Sobolev spaces: old and new directions. J. Comput. Appl. Math. 1993,
vol. 48, no. 1–2, pp. 113–131.
3. Meijer H. G. Laguerre polynimials generalized to a certain
discrete Sobolev inner product space. J. Approx. Theory. 1993, vol.
73, pp. 1-16.
4. Kwon K. H., Littlejohn L. L. The orthogonality of the Laguerre
polynomials \(\ L_n^ (-k) (x)\ \) for positive integers \(k\). Ann.
Numer. Anal. 1995, no. 2, pp. 289-303.
5. Kwon K. H., Littlejohn L. L. Sobolev orthogonal polynomials and
second-order differential equations. Ann. Numer. Anal. 1998. Vol.
28, pp. 547-594.
6. Marcellan F., Yuan Xu. On Sobolev orthogonal polynomials.
arXiv: 6249v1 [math.C.A] 25 Mar 2014, pp. 1-40.
7. Sharapudinov I. I. Approximation of discrete functins and
Chebyshev Polynomials Orthogonal on the Uniform Grid. Matem. zametki [Mathematical Notes]. 2000, vol. 67, no. 3, pp. 460-470. DOI:
10.4213/mzm858.
8. Sharapudinov I. I. Approximation of functions of variable
smoothness by Fourier–Legendre sums. Sbornik: Mathematics. 2000,
vol. 191, no. 5, pp. 759–777.
9. Sharapudinov I. I. Approximation Properties of the Operators \(
\cal Y _ n+2r (f)\)
and of Their Discrete Analogs. Matem. zametki
[Mathematical Notes]. 2002, vol. 72, no. 5, pp. 705–732.
10. Sharapudinov I. I. Mixed series in ultraspherical polynomials
and their approximation properties. Sbornik: Mathematics. 2003, vol.
194, no. 3, pp. 423–456.
11. Sharapudinov I. I. Smeshannye ryady po ortogonalnym polinomam.
Makhachkala. Izd-vo DNTs RAN. 2004. 276 p.
12. Sharapudinov I. I. Mixed Series of Chebyshev Polynomials
Orthogonal on a Uniform Grid. Matem. zametki [Mathematical Notes].
2005. vol. 78, no. 3, pp. 442-465.
13. Sharapudinov I. I. Approximation properties of mixed series in
terms of Legendre polynomials on the classes \(W^r\). Sbornik:
Mathematics. 2006, vol. 197, no. 3, pp. 135-154.
13. Sharapudinov I. I. Approksimativnye svojstva smeshannyh rjadov po
polinomam Chebysheva, ortogonal'nym na ravnomernoj setke. Vestn.
Dagestan. nauch. centra RAN. 2007, vol. 29, pp. 12-23.
14. Sharapudinov I. I. Approximation Properties of the
Vallee-Poussin Means of Partial Sums of a Mixed Series of Legendre
Polynomials. Matem. zametki [Mathematical Notes]. 2008. vol. 84, no.
3, pp. 452-471.
15. Sharapudinov I. I., Muratova G. N. Some properties \(r\)-fold
integration series on Fourier–Haar system I. Izvestiya of Saratov
University.New Series. Series Mathematics. Mechanics. Informatics
2009, vol. 9, no. 1, pp. 68-76.
16. Sharapudinov I. I., Sharapudinov T. I. Mixed Series of Jacobi
and Chebyshev Polynomials and Their Discretization. Matem. zametki
[Mathematical Notes]. 2010, vol. 88, no. 1, pp. 116-147.
16. Sharapudinov I. I. Sistemy funkcij, ortogonal'nyh po Sobolevu,
porozhdennye ortogonal'nymi funkcijami. Sovremennye problemy teorii
funkcij i ih pril. Materialy 18-j mezhdunar. Saratovskoj zimnej shk.
[XVIII International Saratov Winter School "Modern Problems of
Function Theory and Their Applications"]. 2016, pp. 329-332.
17. Trefethen L. N. Spectral methods in Matlab. Fhiladelphia: SIAM,
2000.
18. Trefethen L. N. Finite Difference and Spectral Methods for
Ordinary and Partial Differential Equation. Cornell Univ., 1996.
19. Magomed-Kasumov M. G. Priblizhennoe reshenie obyknovennyh
differencial'nyh uravnenij s ispol'zovaniem smeshannyh rjadov po
sisteme Haara. Sovremennye problemy teorii funkcij i ih pril.
Materialy 18-j mezhdunar. Saratovskoj zimnej shk. [XVIII
International Saratov Winter School "Modern Problems of Function
Theory and Their Applications"]. 2016, pp. 176-178.
20. Sharapudinov I. I. Mnogochleny, ortogonal'nye na diskretnyh
setkah. Mahachkala: Izd-vo Dag. gos. ped. un-ta, 1997.
21. Gasper G. Positivity and special function. Theory and Appl.
Spec. Funct / Ed. by R. A. Askey. N.Y.: Acad. Press Inc., 1975, PP.
375-433.