Abstract: We consider a class of multidimensional potential-type operators whose kernels are oscillating at infinity. The characteristics of these operators are infinitely differentiable homogeneous functions. We describe convex sets in the \((1/p;1/q)\)-plane for which these operators are bounded from \(L_p\) into \(L_q\) and indicate the domains where they are not bounded. In some cases we describe their \(\cal{L}\)-characteristics. To obtain these results we use a new method based on special representation of the symbols of multidimensional potential-type operators. To these representations of the symbols we apply the technique of Fourier-multipliers, which degenerate or have singularities on the unit sphere in \(\mathbb{R}^n\).
For citation: Gurov M. N., Nogin V. A. \(L_p-L_q\)-estimates for generalized Riss potentials with oscillating kernels.Vladikavkazskij matematicheskij zhurnal [Vladikavkaz Math. J.], vol. 19, no. 1, pp. 3-10. DOI 10.23671/VNC.2017.2.6503
1. Betilgiriev M. A., Karasev D. N., Nogin V. A. \(L_p-L_q\)-estimates
for some potential type operators with oscillating kernels.
Fractional Calculus and Applied Analysis, 2004, vol. 7, no 2, pp.
213-241.
2. Borjeson L. Estimates for the Bochner-Riesz operator with
negative index. Indiana University Mathematics Journal, 1986, vol.
35, no. 2, pp. 225-233.
3. Karapetyants A. N., Karasev D. N., Nogin V. A.
\(L_p-L_q\)-estimates for some fractional acoustic potentials and some
related operators. Fractional Calculus and Applied Analysis, 2005,
vol. 7, no. 1, pp. 155-172.
4. Karasev D. N., Nogin V. A. On the boundness of some
potential-type operators with oscillating kernels. Math. Nachr,
2005, vol. 278, no. 5, pp. 554-574.
5. Samko S. G. Hypersingular Integrals and their Applications
[Internat. Series "Analytical Methods and Special Functions", Vol.
5]. London: Taylor and Frances, 2002, 376 p.
6. Stein E. M. Harmonic Analysis: Real-variable Method,
Orthogonality, and Oscillatory Integrals. Princeton, NJ: Princeton
Univ. Press, 1993, 355 p.
7. Gurov M. N. Fourier Transform of the One Oscillating Function.
Izvestija vuzov. Severo-Kavkazskij region. Estestvennye nauki [Izv.
Vyssh. Uchebn. Zaved. Sev.-Kavk. Reg. Estestv. Nauki], 2014, no. 5,
pp. 11-14 (in Russian).
8. Gurov M. N., Karasev D. N., Nogin V. A. On a Certain Fourier
Multiplier. Vladikavkazskij matematicheskij zhurnal [Vladikavkaz
Math. J.], 2015, vol. 17, no. 1, pp. 14-20 (in Russian).
9. Karapetyants A. N., Karasev D. N., Nogin V. A. Estimates for some
potential-type operators with oscillating kernels. Proceedings of
the NAS Armenia: Mathematics, 2003, vol. 38, no. 2, pp. 37-62.
10. Karasev D. N. \(L_p-L_q\)-estimates for some potential type
operators with oscillating kernels. Differential Equations, 2003,
vol. 39, no. 3, pp. 418-420.
11. Kostetskaya G. S., Samko S. G. Absolute integrability of fourier
integrals. Vestnik RUDN (Math), 1994, no. 1, pp. 138-168.
12. Sobolev S. L. Some Applications of Functional Analysis in
Mathematical Physics [Translations of mathematical monographs].
American Math. Society, 1991, 286 p.