Address: Vatutina st. 53, Vladikavkaz,
362025, RNO-A, Russia
Phone: (8672)23-00-54
E-mail: rio@smath.ru
Dear authors!
Submission of all materials is carried out only electronically through Online Submission System in
personal account.
DOI: 10.23671/VNC.2017.1.5817
Complex Powers of a Differential Operator Related to the Schrodinger Operator
Gil A. V. , Nogin V. A.
Vladikavkaz Mathematical Journal 2017. Vol. 19. Issue 1.
Abstract: We study complex powers of the generalized Schrodinger operator in
\(L_p({\mathbb R^{n+1}})\) with complex coefficients in the
principal part
\(
S_{\bar{\lambda}}=m^2I+i b \frac{\partial}{\partial
x_{n+1}}+\sum\limits_{k=1}^n (1-i\lambda_k) \frac{\partial
^2}{\partial x_k^2},
\)
where \(m>0\), \(b>0\) \(\bar{\lambda}=(\lambda_1,\ldots,\lambda_n)\), \(\lambda_k>0\), \(1\leq k\leq n\). Complex powers of the operator \(S_{\bar{\lambda}}\) with negative real parts on "sufficiently nice" functions \(\varphi(x)\) are defined as multiplier operators, whose action in the Fourier pre-images is reduced to multiplication by the corresponding power of the symbol of the operator under consideration:
where \(\Phi\) is the Lizorkin space of functions in \(S\), whose Fourier transforms vanish on coordinate hyperplanes. Within the framework of the method of approximative inverse operators we describe the range \(H_{\bar{\lambda}}^{^\alpha} (L_p)\), \(1\leq p<\frac{n+2}{{{\rm
Re\,}}\,\alpha}\). Recently a number of papers related to complex powers of
second order degenerating differential operator was published (see survey papers [1-3], and also [6-11]). The case considered in our work is the most difficult, because of non-standard expressions for the potentials \(H_{\bar{\lambda}}^{^\alpha} \varphi\).
For citation:
Gil A. V., Nogin V. A. Complex Powers of a Differential Operator Related to the Schrodinger Operator. Vladikavkazskij matematicheskij zhurnal [Vladikavkaz Math. J.], vol. 19, no. 1, pp.3-11. DOI 10.23671/VNC.2017.1.5817
1. Samko S. G. Hypersingular integrals and their applications.
Internat. Ser. Analytical Methods and Special Functions, vol. 5.
Taylor & Frances, London-N.Y., 2002. 376 p.
2. Nogin V. A., Samko S. G. Method of approximating inverse
operators and its applications to the inversion of potential-type
integral transforms. Integral Transforms and Special Functions.
1999, vol. 6, no. 2, pp. 89-104.
3. Nogin V. A., Suhinin E. V. Inversion and description of
hyperbolic potentials with \(L_p\)-densities. Doklady Akademii nauk
[Proceedings of the Russian Academy of Sciences]. 1993, vol. 329,
no. 5. pp. 550 [in Russian].
4. Abramyan A. V., Nogin V. A. Integral transforms, connected with
fractional powers of nonhomogeneous differential operators in
\(L_p\)-spases. Integral Transforms and Special Functions. 1994, vol.
2, no. 1, pp. 1.
5. Nogin V. A., Suhinin E. V. Fractional powers of the Klein-Gordon
operator. Doklady Akademii nauk [Proceedings of the Russian Academy
of Sciences]. 1995, vol. 341, no. 2, pp. 166 [in Russian].
6. Abramyan A. V., Nogin V. A. Factional powers of differential
operators of the second order with constant coefficients in
\(L_p\)-spases. Doklady Akademii nauk [Proceedings of the Russian
Academy of Sciences], 1995, vol. 341, no. 3, pp. 295 [in Russian].
7. Karapetyants A. N., Nogin V. A. Complex powers of the second
order non-homogeneous elliptic differential operators with
degenerating symbols in the spaces \(L_p({\mathbb R^n})\)). Bol. Soc.
Mat. Mexicana, 2001, vol. 7, pp. 193-209.
8. Karasev D. N., Nogin V. A. On the boundedness of some
potential-type operators with oscillating kernels. Mathematische
Nachrichten, 2005, vol. 278, no. 5, pp. 554-574.
9. Gil A. V., Nogin V. A. Inversion and ranges description of
potentials with kernels having singularities on a sphere.
Vladikavkazskij matematicheskij zhurnal [Vladikavkaz Math. J.],
2012, vol. 14, no. 4, pp.10-18 [in Russian].
10. Gil A. V., Nogin V. A. Description of the functional spaces
associated with generalized Schrodinger operators.
Izvestija vysshih uchebnyh zavedenij. Severo-Kavkazskij region.
Serija Estestvennye nauki [University news. North-Caucasian region.
Natural sciences series], 2014, no. 1, pp. 10-13 [in Russian].
11. Gil A. V., Nogin V. A. Complex degrees of one differential
operator in \(L_p\)-spaces. Izvestija vysshih uchebnyh zavedenij.
Severo-Kavkazskij region. Serija Estestvennye nauki [University
news. North-Caucasian region. Natural sciences series], 2014, no.
5, pp. 5-10 [in Russian].
12. Goluzin G. M. Geometricheskaja teorija funkcij kompleksnogo
peremennogo [Geometrical theory of functions of complex variable].
Nauka, M., 1966. 630 p. [in Russian].
13. Lizorkin P. I. Generalized Liouville differentiation and the
method of multiplicators in imbedding theory for classes of
differentiable functions. Trudy Matematicheskogo instituta Akademii
nauk [Proceedings of the Steklov Institute of Mathematics], 1969,
vol.105, pp. 89-167 [in Russian].
14. Gradshteyn I. S., Ryzhik I. M. Tablitsy Integralov, Summ, Riadov
i Proizvedenii [Tables of Integrals, Sums, Series and Products],
Gos. izd-vo fiziko-matematicheskoi lit-ry, Ì., 1971. 1108 p. [in
Russian].
15. Samko S. G., Kilbas A. A., Marichev O. I. Integraly i
proizvodnye drobnogo porjadka i nekotorye ih prilozhenija [Integrals
and Derivatives of a Fractional Order and Some of their
Applications]. Nauka i tehnika [Science and Technology], Minsk,
1987. 688 p. [in Russian].