Abstract: A reconstruction of an analytic function on the unit disk of \(\mathbb{C}\) by its integral characteristics is studied. An algorithm for solving the inverse problem of integral geometry in the space of analytic functions in the unit disk is presented. The main idea behind the paper is that the reconstruction method is determined by the class of functions under consideration: The narrower the class of functions is, the less information one needs to know to restore the function. The simplest reconstruction formulas are obtained in the class of analytic functions in the unit disk. Three integral representations for analytic functions in the unit disk established. The first formula reconstructs the function by its means along radii. The second one restores an analytic function in the unit ball by its means along the vertical line segments. The third integral formula reconstructs an analytic function from its weighted means on the circle.
Keywords: the Radon transform, integral representation, the inverse problem, the Legendre polynomial
For citation:
Bavrin I. I., Yaremko O. E. A Reconstruction of Analytic Functions on the Unit Disk of \(\mathbb{C}\). Vladikavkazskij matematicheskij zhurnal [Vladikavkaz Math. J.], vol. 19, no. 1, pp.3-11. DOI 10.23671/VNC.2017.1.5815
1. Gruzman I. S. Mathematical problems of computed tomography.
Sorosovskij obrazovatel'nyj zhurnal [Soros Educational Journal].
2001. no 5. pp. 117-121 [in Russian].
2. Faux I. D., Pratt M. J. Computational Geometry for Design and
Manufacturing. Halsted, Chichester, England, 1980. 332 p.
3. Tikhonov A. N., Arsenin V. Ya. and Timonov A. A. Matematicheskie
zadachi komp'yuternoy tomografii [Mathematical problems of computed
tomography]. Ser. Problemy nauki i tekhnicheskogo progressa
[Problems of science and technological progress ser.] Moscow: Nauka,
1987. 160 p. [in Russian].
4. Tikhonov A. N., Goncharsky A. V., Stepanov V. V., Yagola A. G.
Numerical methods for the solution of ill-posed problems. Kluwer
Academic Publ. Dordrecht, 1980. 253 p.
5. Natterer F. The Mathematics of Computerized Tomography.
Stuttgart, B. G. Teubner and Chichester etc., John Wiley & Sons,
1986. 222 p.
6. Herman G. T. Fundamentals of Computerized Tomography. Image
Reconstruction from Projections. Springer, 2009. 302 p.
7. Bavrin I. I. Generalization of the Poisson-Jensen formula.
Doklady Mathematics, 2010, vol. 81, no.2, pp.193-195.
8. Bavrin I.I. Generalization of the Schwarz-Jensen formula.
Doklady Mathematics, 2010, vol. 82, no.1, pp. 566-567.
9. Bavrin I. I. Cauchy integral formula in the ring inverse problem.
Doklady Mathematics, 2009, vol.428, pp. 151-152.
10. Bavrin I. I. Inverse problems in integral formulas. Doklady
Mathematics, 2013, vol.87, no.3, pp. 293-295.
11. Bavrin I. I. Integral representations in starlike domains.
Doklady Mathematics, 2012, vol. 447, no. 4, pp. 359-360.
12. Bavrin I. I. Inverse problems for the cauchy, schwarz, and
poisson integralformulas in a polydisk. Doklady Mathematics, 2010,
vol.82, no.2, pp. 787-789.
13. Bavrin I. I. Integral representations in multicircular domains:
invers problems. Doklady Mathematics, 2011, vol. 441, no. 5, pp.
583-587.
14. Bavrin I. I. Operatornyj metod v kompleksnom analize [The
Operator Method in Complex Analysis]Prometey, Moscow, 1991. 200 p.
15. Bateman H., Erdelyi A. Higher Transcendental Functions, vol. 1.
McGraw-Hill Book Co., New York, 1953. 353 p.
16. Yanke E., Emde F., Lesh F. Spetsial'nye funktsii. Formuly,
grafiki, tablitsy [Special functions. Formulas, graphs, tables].
Nauka, Moscow, 1977. 344 p.
17. Szege G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer.
Math. Soc., 1975. 456 p.