Abstract: We studied theoretically conditions of correct operation of a new soft decisions decoder of Reed-Muller second order codes over the field \(\mathbb F_3\), whose experimental research showed that its corrective ability exceeds that of the decoder of the minimum Hamming's distance. For discrete data channel allocated we indicated the smoothness condition under which the decoder guarantees correction of all errors, the number of which does not exceed the permissible number of errors referred to the code design.
2. Prokis Dzh. Tsifrovaya svyaz'. Moscow, Radio i svyaz', 2000. 800 p. [in Russian].
3. Sidel'nikov V.M., Pershakov A.S. Dekodirovanie kodov Rida-Mallera
pri bol'shom chisle oshibok, Problemy peredachi informatsii
[Problems Inform. Transmission], 1992, vol. 28, no. 3, pp. 80-94 [in
Russian].
4. Loidreau P., Sakkour B. Modified version of Sidel'nikov-Pershakov
decoding algorithm for binary second order Reed-Muller codes. Ninth
International Workshop on Algebraic and Combinatorial Coding theory.
Kranevo, 2004, pp. 266-271.
7. Teylor M. Psevdodifferentsial'nye Operatory. Moscow, Mir, 1985. p.
25.
8. Mogilevskaya N. S. Korrektiruyushchaya sposobnost' dekodera myagkikh
resheniy troichnykh kodov Rida-Mallera vtorogo poryadka pri bol'shom
chisle oshibok. Vestnik Donskogo gos. tekh. un-ta, 2015, no. 1, pp.
121-130 [in Russian].
9. Deundyak V.M., Kosolapov Yu.V. O stoykosti kodovogo zashumleniya k
statisticheskomu analizu nablyudaemykh dannykh mnogokratnogo
povtoreniya. Model. i analiz inform. sistem, 2012, vol. 19, no. 4,
pp. 110-127 [in Russian].
10. Bukashkin S.A. Metod sluchaynogo kodirovaniya. Radiotekhnika, 2014,
no. 4, pp. 30-36 [in Russian].
11. Kosolapov Yu.V. Kody dlya obobshchennoy modeli kanala s
podslushivaniem. Problemy peredachi informatsii [Problems Inform.
Transmission], 2015, vol. 51, no 1. pp. 23-28 [in Russian].
12. Logachev O.A., Sal'nikov A.A., Yashchenko V.V. Bulevy funktsii v
teorii kodirovaniya i kriptologii. Moscow, MTsNMO, 2004. 470 p.
13. Pellikaan R., Wu X.-W. List decoding of \(q\)-ary Reed-Muller Codes
IEEE. Transactions on Information Theory, 2004, vol. 50, no. 4, pp.
679-682 [in English].
14. Khirsh M. Differentsial'naya Topologiya. Moscow, Mir, 1979. 280 p.