Abstract: A new method of approximate solution of singular integral equations with application of Chebyshev series is offered. Decomposition coefficients are determined by means
of the solution of systems of simple algebraic equations. A justification of the constructed computational scheme is given and error estimate is deduced. The method is illustrated by test examples.
Keywords: singular integral, Chebyshev series, approximation of integral, error estimation, orthogonal polynomial, coefficient of expansion.
1. Lavrent'ev M. A. O postroenii potoka, obtekayushchego dugu
zadannoj formy, Tr. CAGI [Trudy TsAGI], 1932, no. 118, pp. 3-56
2. Muskhelishvili N. I. Singulyarnye integral'nye uravneniya
[Singular Integral Equations]. M.: Nauka, 1968. 512 p. [in Russian].
3. Belotserkovsky S. M., and Lifanov I. K. Chislennye metody v
singulyarnyh integral'nyh uravneniyah [Numerical Methods for
Singular Integral Equations], Nauka, Moscow, 1985, 252 p. [in
Russian].
4. Lifanov I. K. Metod singulyarnykh integral'nykh ur avneniy i
chislennyy eksperiment [Methods of singular integral equations
and numerical experiments]. Moscow: Yanus, 1995, 520 p.
5. Paszkowski S. Vychislitel'nye primeneniya mnogochlenov i ryadov
CHebysheva [Numerical Applications of Chebyshev Polynomials and
Series], Nauka, Moscow, 1983, 384 p. [in Russian].
6. Krylov V. I. Approximate Calculation of Integrals, The Macmillan
Co., New York-London, 1962.
7. Khubezhty Sh. S. Kvadraturnye formuly dlya singulyarnyh
integralov i nekotorye ih primeneniya [Quadrature Formulas for
Singular Integrals and Some of Their Applications]. Vladikavkaz,
2011, 236 p.
8.Suetin P. K. Klassicheskie ortogonal'nye mnogochleny [Classical
orthogonal polynomials] (Second ed.), 1979, Nauka, Moscow, 406 p.
[in Russian].
9. Natanson I. P. Konstruktivnaya teoriya funkcii [Constructive
Function Theory], GIFML, Moscow, 688 p. [in Russian].
10. Kantorovich L. V., Akilov G. P. Functional Analysis in Normed
Spaces. The Macmillan Company, Publishers, New York, 1964.