Abstract: The necessary and sufficient condition for optimality in the form of the Pontryagin maximum principle in optimal control problem with variable linear structure, described by linear difference and integral-differential equations of Volterra type, is obtained. Under some additional assumptions sufficient optimality conditions are also derived.
Keywords: optimal control problem, linear system with variable structure, differential Volterra type equation, integro-differential Volterra type equation
For citation: Milovanovic E. I. , Milovanovic I. Z. Remarks on first Zagreb
indices // Vladikavkazskii matematicheskii zhurnal [Vladikavkaz
Math. J.], vol. 19, no. 1, pp. 71-75.
DOI 10.23671/VNC.2016.1.5955
1. Andrica D., Badea C. Grus inequality for positive linear
functionals. Period. Math. Hungar, 1988, vol. 19, no. 2. P. 155-167.
2. Balaban A. T., Motoc I., Bonchev D., Mekenyan D. Topological
indices for structure activity correlations. Topics Curr. Chem.,
1983, no. 111, pp. 21-55.
3. Bhatia R., Davis C. A better bound on the variance. Amer. Math.
Monthly, 2000, no. 107, pp. 353-357.
4. Caen D. An upper bound on the sum of squares of degrees in a
graph. Discrete Math., 1998, vol. 185, no. 1-3, pp. 245--248.
5. De N. Some bounds of reformulated Zagreb indices. Appl. Math.
Sci., 2012, vol. 6, no. 101, pp. 505-512.
6. De N. Reformulated Zagreb indices of dendrimers. Math. Aeterna,
2013, vol. 3, no. 2, pp. 133-138.
7. Edwards C. S. The largest vertex degree sum for a triangle in a
graph. Bul. London Math. Soc., 1977, no. 9, pp. 203-208.
8. Gutman I., Trinajstic N. Graph theory and molecular orbitas.
Total \(\pi\)-electron energy of alternant hydrocarbons. Chem. Phys.
Letters, 1972, vol. 17, pp. 535-538.
9. Milicevic A., Nikolic S., Trinajstic N. On reformulated Zagreb
indices. Mol. Divers, 2004, no. 8, pp. 393-399.
10. Nagy J. V. S. Uber algebraische Gleichungen mit lauter reellen
Wurzeln. Jahresbericht der deutschen mathematiker-Vereingung, 1918,
vol. 27, pp. 37-43.
11. Sharma R., Gupta M., Kapoor G. Some better bounds on the
variance with applications. J. Math. Ineq., 2010, vol. 4, no. 3, pp.
355-363.
12. Todeschini R., Consonni V. Handbook of Molecular Descriptors.
Weinheim: Wiley-VCH, 2000.