Address: Vatutina st. 53, Vladikavkaz,
362025, RNO-A, Russia
Phone: (8672)23-00-54
E-mail: rio@smath.ru
Dear authors!
Submission of all materials is carried out only electronically through Online Submission System in
personal account.
DOI: 10.23671/VNC.2016.1.5951
Characterization and Multiplicative Representation of Homogeneous Disjointness Preserving Polynomials
Kusraeva, Z. A.
Vladikavkaz Mathematical Journal 2016. Vol. 18. Issue 1.
Abstract: Let \(E\) and \(F\) be vector lattices and \(P:E\rightarrow F\) an order bounded orthogonally additive (i.e. \(|x|\wedge|y|=0\) implies \(P(x+y)=P(x)+P(y)\) for all \(x,y\in E\)) \(s\)-homogeneous polynomial. \(P\) is said to be disjointness preserving if its corresponding symmetric \(s\)-linear operator from \(E^s\) to \(F\) is disjointness preserving in each variable. The main results of the paper read as follows:
Theorem 3.9. The following are equivalent:
\((1)\) \(P\) is disjointness preserving;
\((2)\) \(\hat{d}^{\,n}P(x)(y)=0\) and \(Px\perp Py\) for all \(x,y\in E\), \(x\perp y\), and \(1\leq n< s\);
\((3)\) \(P\) is orthogonally additive and \(x\perp y\) implies \(Px\perp Py\) for all \(x,y\in E\);
\((4)\) there exist a vector lattice \(G\) and lattice homomorphisms \(S_1,S_2:E \rightarrow G\) such that \(G^{s\scriptscriptstyle\odot}\subset F\), \(S_1(E)\perp S_2(E)\), and \(Px=(S_1x)^{s\scriptscriptstyle\odot}-(S_2x)^{s\scriptscriptstyle\odot}\) for all \(x\in E\);
\((5)\) there exists an order bounded disjointness preserving linear operator \(T:E^{s\scriptscriptstyle\odot}\rightarrow F\) such that \(Px=T(x^{s\scriptscriptstyle\odot})\) for all \(x\in E\).
Theorem 4.7. Let \(E\) and \(F\) be Dedekind complete vector lattices. There exists a partition of unity \((\rho_{\xi})_{\xi\in\Xi}\) in the Boolean algebra of band projections \(\mathfrak{P}(F)\) and a family \((e_{\xi})_{\xi\in\Xi}\) in \(E_+\) such that \(P(x)=o-\sum_{\xi\in\Xi}W\circ\rho_{\xi}S(x/e_{\xi})^{s\scriptscriptstyle\odot}\) \((x\in E)\), where \(S\) is the shift of \(P\) and \(W:\mathcal{F}\rightarrow \mathcal{F}\) is the orthomorphism multiplication by \(o-\sum_{\xi\in\Xi}\rho_{\xi}P(e_{\xi})\).
Keywords: power of a vector lattice, homogeneous polynomial, disjointness preserving polynomial, orthogonal additivity, lattice polymorphism, multiplicative representation
For citation: Kusraeva Z. A. Characterization and multiplicative representation of homogeneous
disjointness preserving polynomials // Vladikavkazskii
matematicheskii zhurnal [Vladikavkaz Math. J.], vol. 19, no. 1, pp.
51-62.
DOI 10.23671/VNC.2016.1.5951
1. Abramovich Yu. A., Veksler A. I. and Koldunov A. V. On disjointness preserving operators.
Dokl. Akad. Nauk SSSR, 1979, vol. 289, no. 5, pp. 1033-1036 [in Russian].
2. Gutman A. E. Banach bundles in the theory of lattice-normed spaces. Linear Operators Compatible
with Order. Sobolev Institure Press, Novosibirsk, 1995, pp. 63-211 [in Russian].
3. Kusraev A. G. Dominated Operators. Nauka, Moscow, 2003 [in Russian].
4. Kusraev A. G. and Tabuev S. N. On disjointness preserving bilinear operators.
Vladikavkazskij Matematicheskij Zhurnal [Vladikavkaz Math. J.],
2004, vol. 6, no. 1, pp. 58-70 [in Russian].
5. Kusraev A. G. and Tabuev S. N. On multiplicative representation of disjointness preserving
bilinear operators. Sib. Math. J., 2008, vol. 49, no. 2, pp. 287-294.
6. Kusraeva Z. A. Representation of orthogonally additive polynomials.
Sib. Math. J., 2011, vol. 52, no. 2, pp. 248-255.
7. Kusraeva Z. A. On extension of regular homogeneous orthogonally additive
polynoials. Vladikavkazskij Matematicheskij Zhurnal [Vladikavkaz Math. J.], 2011,
vol. 13, no. 4, pp. 28-34 [in Russian].
8. Kusraeva Z. A. Homogeneous orthogonally additive polynomials on vector lattices.
Math. Notes, 2012, vol. 91, no. 5, pp. 657-662.
9. Abramovich Yu. A. Multiplicative representation of disjointness
preserving operators. Indag. Math. N.S., 1983, vol. 45, no. 3, pp. 265-279.
10. Benyamini Y., Lassalle S., Llavona J. G. Homogeneous orthogonally additive polynomials
on Banach lattices. Bull. London Math. Soc., 2006, vol. 38, no. 3, pp. 459-469.
11. Boulabiar K. Products in almost \(f\)-algebras. Comment. Math. Univ. Carolin, 2000, vol. 41, no. 4, 747-759.
12. Boulabiar K., Buskes G. Vector lattice powers: \(f\)-algebras and functional calculus.
Comm. Algebra, 2006, vol. 34, no. 4, pp. 1435-1442.
13. Bu Q., Buskes G. Polynomials on Banach lattices and positive tensor products. J. Math. Anal. Appl.,
2011, vol. 388, pp. 845-862.
14. Buskes G. and Kusraev A. Extension and representation of orthoregular maps.
Vladikavk. Math. J., 2007, vol. 9, no. 1, pp. 16-29.
15. Buskes G., van Rooij A. Almost \(f\)-algebras: commutativity and the Cauchy-Schwarz inequality.
Positivity, 2000, vol. 4, no. 3, pp. 227-231.
16. Dineen S. Complex Analysis on Infinite Dimensional Spaces. Berlin: Springer, 1999. xv+543 p.
17. Gutman A. E. Disjointness preserving operators. Vector Lattices and
Integral Operators / Ed. S. S. Kutateladze. Dordrecht etc.: Kluwer,
1996, pp. 361--454.
18. Ibort A., Linares P., Llavona J. G. A representation theorem for orthogonally
additive polynomials on Riesz spaces, 2012, arXiv: 1203.2379vl [math.Fa].
19. Kusraev A. G. A Radon-Nikodym type theorem for orthosymmetric bilinear operators.
Positivity, 2010, vol. 14, no. 2, pp. 225-238.
20. Kusraev A. G., Kutateladze S. S. Boolean Valued Analysis: Selected Topics. Vladikavkaz:
SMI VSC RAS, 2014. iv+400 p. (Trends in Science: The South of Russia. Math. Monogr. Issue 6).
21. Linares P. Orthogonal additive polynomials and applications. Thesis.
Departamento de Analisis Matematico. Universidad Complutense de Madrid, 2009.
22. Loane J. Polynomials on Riesz Spaces. Thesis. Department of Mathematics National University of Ireland, Galway, 2007.
23. Quinn J. Intermediate Riesz spaces. Pacific J. of Math., 1975, vol. 56, no. 1, pp. 225-263.
24. Schep A. R. Factorization of positive multilinear maps. Illinois J. Math., 1984, vol. 28, no. 4, pp. 579-591.
25. Toumi M. A. Orthogonally additive polynomials on Dedekind \(\sigma\)-complete vector lattices. Proc. Irish Royal Academy, 2011, vol. 110, pp. 83-94.