Abstract: We investigate the procedure of extension of a dominated orthogonally additive map dominated by a laterally continuous operator from laterally ideal to the whole space. It is established that such operator admits an extension that is dominated and laterally continuous.
For citation: Abasov N. M., Pliev M. A. On extension of dominated uryson // Vladikavkazskii matematicheskii zhurnal [Vladikavkaz Math. J.], vol. 19, no. 1, pp. 3-8. DOI 10.23671/VNC.2016.1.5925
1. Mazon J. M., Segura de Leon S. Order bounded orthogonally additive
operators. Rev. Roumaine Math. Pures Appl., 1990, vol. 35, no. 4,
pp.329-353.
2. Mazon J. M., Segura de Leon S. Uryson operators. Rev. Roumaine Math.
Pures Appl., 1990, vol. 35, no. 5, pp. 431-449.
3. Kusraev A. G., Pliev M. A. Orthogonally additive operators on
lattice-normed spaces. Vladikavkazskij matematicheskij zhurnal
[Vladikavkaz Math. J.], 1999, vol. 1, no. 3, pp. 33-43 [in Russian].
4. Kusraev A. G., Pliev M. A. Weak integral representation of the
dominated orthogonally additive operators. Vladikavkazskij
matematicheskij zhurnal [Vladikavkaz Math. J.], 1999,
vol. 1, no. 4 (1999), pp. 22-39 [in Russian].
5. Pliev M. A. Uryson operators on the spaces with mixed norm.
Vladikavkazskij matematicheskij zhurnal [Vladikavkaz Math. J.],
2007, vol. 9, no. 3, pp. 47-57 [in Russian].
6. Abasov N., Pliev M. Order properties of the space of dominated
Uryson operators. Int. J. of Math. Anal., 2015, vol. 9, no. 45,
pp. 2211-2219.
7. Ben Amor M. A., Pliev M. Laterally continuous part of an abstract
Uryson operator. Int. J. of Math. Anal., 2013, vol. 7, no. 58, pp.
2853-2860.
8. Getoeva A., Pliev M. Domination problem for orthogonally additive
operators in lattice-normed spaces. Int. J. of Math. Anal., 2015,
vol. 9, no. 27, pp. 1341-1352.
9. Gumenchuk A. V., Pliev M. A., Popov M. M. Extensions of orthogonally
additive operators. Math. Stud., 2014, vol. 41, no. 2, pp.
214-219.
10. Pliev M., Popov M. Narrow orthogonally additive operators,
Positivity, 2014, vol. 18, no. 4, pp. 641-667.
11. Pliev M., Popov M. Dominated Uryson operators. Int. J. of Math.
Anal., 2014, vol. 8, no. 22, pp. 1051-1059.
12. Pliev M. Domination problem for narrow orthogonally additive
operators. Positivity. DOI 10.1007/s11117-016-0401-9.
13. Pliev M. A., Weber M. R. Disjointness and order projections in the
vector lattices of abstract Uryson operators. Positivity. DOI
10.1007/s11117-015-0381-1.
14. Kusraev A. G. Dominated Operators. Kluwer Acad. Publ.,
Dordrecht-Boston-London, 2000.
15. Aliprantis C. D., Burkinshaw O. Positive Operators. Dordrecht:
Springer, 2006.