Abstract: We study two problems of integral geometry in a strip on a family of line segments with a given weight function. In the first case, we consider the problem of reconstruction a function in a strip, if we know the integrals of the sought function on the family of line segments with a given weight function of a~special kind. An analytical representation of a solution in the class of smooth finite functions is obtained and the uniqueness and existence theorems for a solution of the problem are proved. A stability estimate of solution in Sobolev spaces is presented, which implies its weakly ill-posedness. For the problem with perturbation the uniqueness theorem and stability estimate of solution were obtained. In the second case, we considered the problem of reconstructing a function given by integral data on the family of line segments with a~weight function of exponential type. The uniqueness and existence theorems of a solution are proved. A simple representation of a solution in the class of smooth finite functions is constructed. Next, we consider the corresponding problem of integral geometry with perturbation. The uniqueness theorem in the class of smooth finite functions in a strip is proved and a stability estimate of a solution in Sobolev spaces is received.
Keywords: problems of integral geometry, Radon transform, Fourier transform, Laplace transform inversion formula, stability estimates, uniqueness of the solution, existence theorem, weakly Ill-posedness, perturbation
For citation: Begmatov A. H., Djaykov G. M. Linear Problem of Integral Ggeometry with Smooth Weight Functions and Perturbation. Vladikavkazskii matematicheskii zhurnal [Vladikavkaz Math. J.], vol. 17, no. 3, pp.14-22.
DOI 10.23671/VNC.2017.3.7259
1. 1. Lavrent'ev M. M. Integral geometry problems with perturbation on
the plane. Sib. Math. J. [Sib. Mat. Zh., 1996, vol. 37, no. 4, pp.
851-857], 1996, vol. 37, no. 4, pp. 747-752.
2. Begmatov A. H. A perturbed integral geometry problem in
three-dimensional space. Sib. Math. J. [Sib. Mat. Zh., 2000, vol.
41, no. 1, pp. 3-14], 2000, vol. 41, no. 1, pp. 1-12.
3. Begmatov A. H. On a problem of integral geometry with
perturbation in three-dimensional space. Dokl. AN [Doklady
Mathematics], 2000, vol. 371, no. 2, pp. 155-158 (Russian).
4. Begmatov A. H. Ob odnom klasse zadach integral'noj geometrii na
ploskosti. Dokl. AN [Dokl. Math.], 1993, vol. 331, no. 3, pp.
261-262 (Russian).
5. Begmatov A. H., Petrova, N. N. A problem of integral geometry
with perturbation on elliptic curves in a strip. Doklady Mathematics
[Dokl. AN, 2011, vol. 436, no. 2, pp. 151-154], 2011, vol. 83, no.
1, pp. 22-25.
6. Begmatov A. H., Dzhajkov G. M. Reconstruction of a function from
its spherical means. Dokl. Akad. Nauk Vyssh. Shkoly RF, 2013, vol.
1, no. 20, pp. 6-16 (Russian).
7. Nowack R. L. Tomography and the Herglotz - Wiechert inverse
formulation. Pure and Apllied Geophysics, 1990, vol. 133, pp.
305-315.
8. Natterer F. Matematicheskie Aspekty Komp'juternoj Tomografii [The
Mathematics of Computerized Tomography], M., Mir, 1990, 288 p.
(Russian).
9. Kabanihin S. I. Obratnye i Nekorrektnye Zadachi, Novosibirsk,
Sib. Nauch. Izd-vo, 2009, 457 p. (Russian).
10. Begmatov A. H. The integral geometry problem for a family of
cones in then-dimensional space. Siberian Mathematical J. [Sibirsk.
Mat. Zh., 1996, vol. 37, no. 3, pp. 500-505], 1996, vol. 37, no. 3,
pp. 430-435.
11. Begmatov A. H., Pirimbetov A. O., Seidullaev A. K. Problems of
integral geometry in a strip on families of parabolic curves. Dokl.
AN VSh RF [Proc. of the Russian Higher School Academy of Sciences],
2012, vol. 2, no. 2 (19), pp. 6-15 (Russian).
12. Begmatov A. H., Pirimbetov A. O., Seidullaev A. K.
Reconstruction stability in some problems of X-ray and seismic
tomography. Proceedings of IFOST-2012, Tomsk Polytechnic University,
2012, vol. 2, pp. 261-266.
13. Begmatov A. H. Integral geometry problems of Volterra type.
Integral Methods in Science and Engineering, eds. B. Bertram, C.
Constanda and A. Struthers, Boka Raton, Fl, Chapman Hall/CRC, 2000,
pp. 46-50 (Research Notes in Math. Ser., vol. 418).
14. Lavrent'ev M. M, Romanov V. G, Shishatskij S. P. Nekorrektnye Zadachi Matematicheskoj Fiziki i Analiza, M., Nauka, 1980, 286 p.
(Russian).
15. Begmatov A. H. On the uniqueness of a solution of an integral
geometry problem of Volterra type on the plane. Dokl. Math. [Dokl.
Akad. Nauk, 2009, vol. 427, no. 4, 439-441], 2009, vol. 80, no. 1,
528-530. Funkcional'nyj Analiz. Spravochnaja Matematicheskaja, ed.
S. G. Krejn, M., Nauka, 1972, 544 p. (Russian).