Address: Vatutina st. 53, Vladikavkaz,
362025, RNO-A, Russia
Phone: (8672)23-00-54
E-mail: rio@smath.ru
Dear authors!
Submission of all materials is carried out only electronically through Online Submission System in
personal account.
DOI: 10.23671/VNC.2017.3.7257
On Topological Structure of Some Sets Related to the Normalized Ricci Flow on Generalized Wallach Spaces
Abiev N. A.
Vladikavkaz Mathematical Journal 2015. Vol. 17. Issue 3.
Abstract: We study topological structures of the sets \((0,1/2)^3 \cap \Omega\) and \((0,1/2)^3 \setminus \Omega\), where \(\Omega\) is one special algebraic surface defined by a symmetric polynomial of degree 12. These problems arise in studying of general properties of degenerate singular points of dynamical systems obtained from the normalized Ricci flow on generalized Wallach spaces. Our main goal is to prove the connectedness of \((0,1/2)^3 \cap \Omega\) and to determine the number of connected components of \((0,1/2)^3 \setminus \Omega\).
Keywords: Riemannian metric, generalized Wallach space, normalized Ricci flow, dynamical system, degenerate singular point of dynamical system, real algebraic surface, singular point of real algebraic surface
For citation: Abiev N. A. On Topological Structure of Some Sets Related to the Normalized Ricci Flow on Generalized Wallach Spaces. Vladikavkazskii matematicheskii zhurnal [Vladikavkaz Math. J.], vol.
17, no. 3, pp.5-13.
DOI 10.23671/VNC.2017.3.7257
1. Abiev N. A., Arvanitoyeorgos A., Nikonorov Yu. G. and Siasos P.
The dynamics of the Ricci flow on generalized Wallach spaces.
Differ. Geom. Appl., 2014, vol. 35, pp. 26-43.
2. Abiev N. A., Arvanitoyeorgos A., Nikonorov Yu. G. and Siasos P.
The Ricci flow on some generalized Wallach spaces. Geometry and its
Applications (Eds. V. Rovenski, P. Walczak), Switzerland, Springer,
2014, pp. 3-37 (Springer Proceedings in Math. & Statistics, vol.
72).
3. Abiev N. A., Arvanitoyeorgos A., Nikonorov Yu. G., Siasos P. The
normalized Ricci flow on generalized Wallach spaces. Math. Forum,
vol. 8, p. 1. Stud. Math. Anal., Vladikavkaz, SMI VSC RAS, 2014, pp.
25-42 (Review of Science: The South of Russia).
4. Basu S., Pollack R. and Roy M.-F. Algorithms in Real Algebraic
Geometry, Berlin, Springer-Verlag, 2006, x+662 p. (Algorithms and
Computation in Math. Vol. 10).
5. Batkhin A. B. and Bruno A. D. Investigation of a real algebraic
surface. Programming and Computer Software, 2015, vol. 41, no. 2,
pp. 74-83.
6. Bruce J. W. and Giblin P. J. Curves and Singularities. A
Geometrical Introduction to Singularity Theory, Cambridge, Cambridge
Univ. Press, 1984, xii+222 p.
7. Chen Zhiqi, Kang Yifang and Liang Ke. Invariant Einstein Metrics
on Three-Locally-Symmetric Spaces, 2014, URL: arXiv:1411.2694
(Preprint).
8. Chow B. and Knopf D. The Ricci Flow: an Introduction, Providence,
R.I.: AMS, 2004, xii+325 p. (Math. Surveys and Monogr. Vol. 110).
9. Lomshakov A. M., Nikonorov Yu. G. and Firsov E. V. On invariant
Einstein metrics on three-locally-symmetric spaces. Dokl. Math.,
2002, vol. 66, no. 2, pp. 224-227.
10. Nikonorov Yu. G. On a class of homogeneous compact Einstein
manifolds. Sib. Math. J. [Sib. Mat. Zh., 2000, vol. 41, no. 1, pp.
200-205], 2000, vol. 41, no. 1, pp. 168-172.
11. Nikonorov Yu. G. Classification of Generalized Wallach Spaces,
2014. URL: arXiv:1411.3131 (Preprint).
12. Nikonorov Yu. G., Rodionov E. D. and Slavskii V. V. Geometry of
homogeneous Riemannian manifolds. J. Math. Sci., 2007, vol. 146, no.
7, pp. 6313-6390.
13. Silhol R. Real Algebraic Surfaces, Berlin, Springer-Verlag,
1989, x+215 p. (Lecture Notes Math. Vol. 1392).
14. Topping P. Lectures on the Ricci Flow, Cambridge, Cambridge
Univ. Press, 2006, x+113 p. (London Math. Soc. Lecture Note Ser.
Vol. 325).