Address: Vatutina st. 53, Vladikavkaz,
362025, RNO-A, Russia
Phone: (8672)23-00-54
E-mail: rio@smath.ru
Dear authors!
Submission of all materials is carried out only electronically through Online Submission System in
personal account.
DOI: 10.23671/VNC.2015.2.7277
Artin's theorem for \(f\)-rings
Kusraev, A. G.
Vladikavkaz Mathematical Journal 2015. Vol. 17. Issue 2.
Abstract: The main result states that each positive polynomial \(p\) in \(N\) variables with coefficients in a unital Archimedean \(f\)-ring \(K\) is representable as a sum of squares of rational functions over the complete ring of quotients of \(K\) provided that \(p\) is positive on the real closure of \(K\). This is proved by means
of Boolean valued interpretation of Artin's famous theorem which answers Hilbert's 17th problem affirmatively.
Keywords: \(f\)-ring, complete ring of quotients, real closure, polynomial, rational function, Artin's theorem, Hilbert 17th problem, Boolean valued representation
For citation: Kusraev A. G. Artin's theorem for \(f\)-rings. Vladikavkazskii matematicheskii zhurnal [Vladikavkaz Math. J.], vol.
17, no. 2, pp.32-36.
DOI 10.23671/VNC.2015.2.7277
1. Anderson F. W. Lattice-ordered rings of quotients. Canad. J.
Math., 1965, vol. 17, pp. 434-448.
2. Bigard A., Keimel K., and Wolfenstein S. Groupes et Anneaux
Reticules, Berlin etc., Springer-Verlag, 1977, xi+334 p. (Lecture
Notes in Math., vol. 608).
3. Bochnak J., Coste M., and Roy M.-F. Real Algebraic Geometry,
Berlin a.o., Springer, 1998, x+430 p.
4. Delzell C. N., Gonzalez-Vega L., and Lombardi H. A continuous and
rational solution to Hilbert's 17th problem and several cases of the
Positivstellensatz. Computational Alg. Geom., Eds. F. Eyssette and
A. Galligo, Birkhauser, Boston a. o., 1993, pp. 61-75 (Progress in
Math., vol. 109).
5. Gordon E. I. Real numbers in Boolean-valued models of set theory
and K-spaces. Dokl. Akad. NaukSSSR, 1977, vol. 237, no. 4, pp.
773-775.
6. Gordon E. I. Rationally Complete Semiprime Commutative Rings in
Boolean Valued Models of Set Theory, Gor'kii, 1983, 35 p. (VINITI,
no. 3286-83).
7. Henriksen M. and Isbell J. R. Lattice-ordered rings and function
rings. Pacific J. Math., 1962, vol. 12, pp. 533-565.
8. Knebusch M. and Zhang D. Convexity, Valuations and Prufer
extensions in real algebra. Documenta Math., 2005, vol. 10, pp.
1-109.
9. Kusraev A. G. and Kutateladze S. S. Introduction to Boolean
Valued Analysis, M., Nauka, 2005, 526 p. (in Russian).
10. Kusraev A. G. and Kutateladze S. S. Boolean Valued Analysis:
Selected Topics, Vladikavkaz, SMI VSC RAS, 2014, iv+400 p.
11. Lambek J. Lectures on Rings and Modules, Toronto, Blaisdell
Publ. Comp., 1966, 183 p. (AMS Chelesea publishing. Providence, R.I.).
12. Lombardi H., Perrucci D., and Roy M.-F. An Elementary Recursive
Bound for Effective Positivstellensatz and Hilbert 17th Problem,
2014, arXiv:1404.2338v2 [math.AG].
13. Prasolov V. V. Polynomials, Berlin-Heidelberg, Springer-Verlag,
2010, 301 p.
14. Prestel A. and Delzell Ch. N. Positive Polynomials: From
Hilbert's 17th Problem to Real Algebra, Berlin a. o.: Springer,
2001, viii+267 p.
15. Schwartz N. The Basic Theory of Real Closed Spaces, Providence
(R. I.), Amer. Math. Soc., 1989, 122 p. (Mem. Amer. Math. Soc., vol.
77(397)).
16. Takeuti G. Two Applications of Logic to Mathematics, Princeton,
Princeton Univ. Press, 1978.
17. Takeuti G. A transfer principle in harmonic analysis. Symbolic
Logic, 1979, vol. 44, no. 3, pp. 417-440.