Address: Vatutina st. 53, Vladikavkaz,
362025, RNO-A, Russia
Phone: (8672)23-00-54
E-mail: rio@smath.ru
Dear authors!
Submission of all materials is carried out only electronically through Online Submission System in
personal account.
DOI: 10.23671/VNC.2015.2.7275
On finite groups with small simple spectrum, II
Kondratiev A. S.
Vladikavkaz Mathematical Journal 2015. Vol. 17. Issue 2.
Abstract: This is a survey of the results about finite groups whose prime graphs have a small number of vertices obtained recently by the author jointly with his pupils.
It is refined a description of the chief factors of 4-primary groups, whose prime graphs are disconnected. The finite almost simple \(5\)-primary and \(6\)-primary groups and their Gruenberg--Kegel graphs are determined. The chief factors of the commutator subgroups of finite non-solvable groups \(G\) with disconnected Gruenberg--Kegel graph having exactly 5 vertices are described in the case when \(G / F(G)\) is an almost simple \(n\)-primary group for \(n \le 4\). The problem of the realizability of a graph with at most five vertices as the prime graph of a finite group is solved. The finite almost simple groups with prime graphs, whose the connected components are complete graphs, are determined. The finite almost simple groups whose prime graphs do not contain triangles are determined. It is proved that the groups \({^2}E_6(2)\), \(E_7(2)\) and \(E_7(3)\) are recognizable by the prime graph. Absolutely irreducible \(SL_n(p^f)\)-modules over a field of prime characteristic \(p\), where an element of a given prime order \(m\) from a Zinger cycle of \(SL_n(p^f)\) acts freely, are classified in the following three cases:
a) the residue of \(q\) modulo \(m\) generates the multiplicative group of the field of order \(m\) (in particular, this holds for \(m=3\)); b) \(m=5\); c) \(n=2\).
Keywords: finite group, almost simple group, chief factor, prime spectrum, prime graph, recognizability, modular representation
For citation: Kondratiev A. S. On finite groups with small simple spectrum, II. Vladikavkazskii matematicheskii zhurnal [Vladikavkaz Math. J.], vol.
17, no. 2, pp.22-31.
DOI 10.23671/VNC.2015.2.7275
1. Williams J. S. Prime graph components of finite groups. J.
Algebra, 1981, vol. 69, no. 2, pp. 487-513.
2. Kondrat'ev A. S. Prime graph components of finite simple groups.
Mathematics of the USSR-Sbornik, 1989, vol. 67, no. 1, pp. 235-247.
3. Iiyori N., Yamaki H. Prime graph components of the simple groups
of Lie type over the fields of even characteristic. J. Algebra,
1993, vol. 155, no. 2, pp. 335-343; Corrigenda: J. Algebra, 1996,
vol. 181, no. 2, p. 659.
4. Lucido M. S. Prime graph components of finite almost simple
groups. Rend. Sem. Mat. Univ. Padova, 1999, vol. 102, pp. 1-22;
Addendum: Rend. Sem. Mat. Univ. Padova, 2002, vol. 107, pp. 189-190.
5. Vasiliev A. V., Vdovin A. V. An adjacency criterion for the
prime graph of a finite simple group. Algebra and Logic, 2005, vol.
44, no. 6, pp. 381-406.
6. Vasiliev A. V., Vdovin A. V. Cocliques of maximal size in the
prime graph of a finite simple group. Algebra and Logic, 2005, vol.
50, no. 4, pp. 291-322.
7. Kondrat'ev A. S. On finite groups with small simple spectrum.
Mat. Forum. Vol. 6. Gruppy i Grafy [Math. Forum. Vol. 6. Groups and
Grafs], Vladikavkaz, SMI VSC RAS, 2012, pp. 56-74 (Russian).
8. Huppert B. Endliche Gruppen I, Berlin, Springer-Verlag, 1967, 793
p.
9. Aschbacher M. Finite Group Theory, Cambridge, Cambridge Univ.
Press, 1986, 274 p.
10. Conway J. H. et. al. Atlas of Finite Groups, Oxford, Clarendon
Press, 1985, 252 p.
11. Kondrat'ev A. S., Hramcov I. V. On finite triprimary groups.
Trudy Inst. Mat. i Mekh. UrO RAN [Proceedings of the Steklov
Institute of Mathematics], 2010, vol. 16, no. 3, pp. 150-158
(Russian).
12. Kondrat'ev A. S., Hramcov I. V. On finite tetraprimary groups.
Proceedings of the Steklov Institute of Mathematics, 2012, vol. 279,
pp. 43-61.
13. Kondrat'ev A. S., Hramcov I. V. On finite nonsimple threeprimary
groups with disconnected prime graph. Sib. Elektron. Mat. Izv. [Sib.
Electron. Math. Reports], 2012, vol. 9, pp. 472-477 (Russian).
14. Kondrat'ev A. S., Hramcov I. V. The complete reducibility of
some GF(2)A 7-modules. Proceedings of the Steklov Institute of
Mathematics, 2013, vol. 283, pp. 86-90.
15. Hramcov I. V. On finite non-simple 4-primary groups. Sib.
Elektron. Mat. Izv. [Sib. Electron. Math. Reports], 2014, vol. 11,
pp. 695-708 (Russian).
16. Kondrat'ev A. S., Hramcov I. V. O konechnyh gruppah, kotorye
imejut nesvjaznyj graf prostyh chisel i kompozicionnyj faktor,
izomorfnyj L_3(17). Algebra i Mat. Logika: Teorija i Prilozhenija,
Kazan', Izd-vo Kazan. Un-ta, 2014, pp. 81-82 (Russian).
17. Kondrat'ev A. S., Suprunenko I. D., Hramcov I. V. O moduljarnyh
predstavlenijah gruppy L_3(17). Tez. Dokl. Mezhdunar. Konf.
"Mal'cevskie chtenija" [Collection of Abstracts International
Conference "Mal'tsev Meeting"], Novosibirsk, IM SO RAN i NGU, 2014,
p. 63 (Russian).
18. Hramcov I. V. O konechnyh gruppah, kotorye imejut nesvjaznyj
graf prostyh chisel i kompozicionnyj faktor, izomorfnyj gruppe
L_2(81). Tr. Mezhdunar. Shkoly-Konf. po Teorii Grupp, Posvjashh.
70-letiju V. V. Kabanova, Nal'chik: Izd-vo KBGU, 2014, pp. 56-58
(Russian).
19. Kondrat'ev A. S. Finite almost simple 5-primary groups and their
Gruenberg-Kegel graphs. Proceedings of the F. Scorina Gomel State
University, 2014, no. 3 (84), pp. 58-60.
20. Kondrat'ev A. S. Finite almost simple 5-primary groups and their
Gruenberg-Kegel graphs. Siberian Electronic Mathematical Reports,
2014, vol. 11, pp. 634-674.
21. Jafarzadeh A., Iranmanesh A. On simple K n-groups for n=5,6.
London Math. Soc. Lecture Note Ser., 2007, vol. 340, pp. 517-526.
22. Zhang L., Shi W., Lv H., Yu D., Chen S. OD-Characterization of
Finite Simple K_5-Groups, Preprint, 2011.
23. The GAP Group, GAP - Groups, Algorithms, and Programming, Ver.
4.4.12, 2008, URL:http://www.gap-system.org.
24. Kolpakova V. A., Kondrat'ev A. S. O konechnyh nerazreshimyh
5-primarnyh gruppah G s nesvjaznym grafom Grjunberga - Kegelja
takih, chto ||pi(G/F(G))||< 4. Tez. Dokl. Mezhdunar. Konf.
"Mal'cevskie chtenija" [Collection of Abstracts International
Conference "Mal'tsev Meeting"], Novosibirsk, IM SO RAN i NGU, 2014,
p. 61 (Russian).
25. Kolpakova V. A., Kondrat'ev A. S. Konechnye pochti prostye
6-primarnye gruppy i ih grafy Grjunberga - Kegelja. Algebra i
Prilozhenija: Tr. Mezhdunar. Konf. po Algebre, Posvjashh. 100-letiju
so Dnja Rozhdenija L. A. Kaluzhnina, Nal'chik, KBGU, 2014, pp. 63-66
(Russian).
26. Herzog M. On finite simple groups of order divisible by three
primes only. J. Algebra, 1968, vol. 10, no. 3, pp. 383-388.
27. Nereshennye Voprosy Teorii Grupp. Kourovskaja Tetrad', 17-e izd,
Red. Mazurov V. D., Huhro V. I., Novosibirsk, Novosib. Gos. Un-t,
2010 (Russian).
28. Kondrat'ev A. S. Recognition of the Groups E_7(2) and E_7(3) by
Prime Graph. Proceedings of the Steklov Institute of Mathematics,
2015, vol. 289, pp. 139-145.
29. Kondrat'ev A. S. Gruppy s zadannym spektrom. Izv. Ural. Gos.
Un-ta, 2005, no. 36, pp. 119-138 (Matematika i Mehanika. Vol. 7).
30. Kondrat'ev A. S. Raspoznavaemost' po grafu prostyh chisel gruppy
^2E_6(2). Materialy Mezhdunar. Simpoziuma "Abelevy Gruppy",
Posvjashh. 100-letiju so Dnja Rozhdenija L. Ja. Kulikova, M.: MPGU,
2014, pp. 35-37 (Russian).
31. Tong-Viet H. P. Groups whose prime graphs have no triangles. J.
Algebra, 2013, vol. 378, pp. 196-206.
32. Gavrilyuk A. L., Khramtsov I. V., Kondrat'ev A. S., Maslova N.
V. On realizability of a graph as the prime graph of a finite group.
Sib. Elektron. Mat. Izv. [Sib. Electron. Math. Reports], 2014, vol.
11, pp. 246-257.
33. Lucido M. C. Groups in which the prime graph is a tree. Boll.
Unione Mat. Ital. (8), 2002, vol. 5-B, no. 1, pp. 131-148.
34. Alekseeva O. A., Kondrat'ev A. S. Konechnye pochti prostye
gruppy, grafy Grjunberga - Kegelja kotoryh ne soderzhat
treugol'nikov. Tez. Dokl. Mezhdunar. Konf. "Mal'cevskie chtenija"
[Collection of Abstracts International Conference "Mal'tsev
Meeting"], Novosibirsk, IM SO RAN i NGU, 2014, p. 50 (Russian).
35. Lucido M. S., Moghaddamfar A. R. Groups with complete prime
graph connected components. J. Group Theory, 2004, vol. 7, no. 3,
pp. 373-384.
36. Zinov'eva M. R., Mazurov V. D. On finite groups with
disconnected prime graph. Proceedings of the Steklov Institute of
Mathematics, 2013, vol. 283, pp. 139-145.
37. Zinov'eva M. R., Kondrat'ev A. S. Klassifikacija konechnyh
pochti prostyh grupp s grafami prostyh chisel, vse svjaznye
komponenty kotoryh javljajutsja klikami. Teorija Grupp i ee
Prilozhenija: Tr. Mezhdunar. Shkoly-Konf. po Teorii Grupp,
Posvjashh. 70-letiju V. V. Kabanova, Nal'chik: Izd-vo KBGU, 2014,
pp. 25-26 (Russian).
38. Suprunenko I. D., Zalesski A. E. Fixed vectors for elements in
modules for algebraic groups. Intern. J. Algebra Comput., 2007, vol.
17, no. 5-6, pp. 1249-1261.
39. Kondrat'ev A. S., Osinovskaja A. A., Suprunenko I. D. On the
behavior of elements of prime order from Singer cycles in
representations of special linear groups. Proceedings of the Steklov
Institute of Mathematics, 2014, vol. 285, pp. 108-115.
40. Higman G. Odd Characterizations of Finite Simple Groups:
Lecture Notes, Michigan, Univ. Michigan, 1968, 77 p.
41. Stewart W. B. Groups having strongly self-centralizing
3-centralizers. Proc. London Math. Soc., 1973, vol. 426, no. 4, pp.
653-680.
42. Wilson R. Certain representations of Chevalley groups over
CF(2^n). Comm. Algebra, 1975, vol. 3, no. 4, pp. 319-364.
43. Fleischmann P., Lempken W., Zalesskii A. E. Linear groups over
GF(2^k) generated by a conjugacy class of a fixed point free element
of order 3. J. Algebra, 2001, vol. 244, no. 2, pp. 631-663.
44. Suprunenko I. D., Zalesski A. E. Fixed vectors for elements in
modules for algebraic groups. Intern. J. Algebra Comput., 2007, vol.
17, no. 5-6, pp. 1249-1261.
45. Zalesski A. E. On eigenvalues of group elements in
representations of algebraic groups and finite Chevalley groups.
Acta Appl. Math., 2009, vol. 108, no. 1, pp. 175-195.