Abstract: The paper is aimed to characterize order bounded disjointness preserving bilinear operators in terms of their null-spaces. To this end the Boolean valued analysis approach is employed.
For citation: Kusraev A. G., Kutateladze S. S. A characterization of order bounded disjointness preserving bilinear operators. Vladikavkazskii matematicheskii zhurnal [Vladikavkaz Math. J.], vol. 17, no. 1, pp.60-63.
DOI 10.23671/VNC.2015.1.7293
1. Kutateladze S. S. On Differences of Lattice Homomorphisms. Sib.
Math. J., 2005, vol. 46, no. 2, pp. 393-396.
2. Kutateladze S. S. On Grothendieck Subspaces. Sib. Math. J.,
2005, vol. 46, no. 3, pp. 620-624.
3. Kutateladze S. S. The Farkas Lemma Revisited. Sib. Math. J.,
2010, vol. 51, no. 1, pp. 78-87.
4. Kusraev A. G., Kutateladze S. S. On order bounded disjointness
preserving operators. Sib. Math. J., 2014, vol. 55, no. 5, pp.
915-928.
5. Kusraev A. G. Dominated Operators, Dordrecht, Kluwer, 2000.
6. Aliprantis C. D., Burkinshaw O. Positive Operators, N.Y.,
Academic Press, 1985, xvi+367 p.
7. Bell J. L. Boolean Valued Models and Independence Proofs in Set
Theory, N.Y., Clarendon Press, 1985, xx+165 p.
8. Kusraev A. G., Kutateladze S. S. Boolean Valued Analysis,
Novosibirsk, Nauka, 1999; Dordrecht, Kluwer, 1999.
9. Kusraev A. G., Tabuev S. N. On Multiplicative Representation of
Disjointness Preserving Bilinear Operators. Sib. Math. J., 2008,
vol. 49, no. 2, pp. 357-366.
10. Kusraev A. G., Kutateladze S. S. Boolean Valued Analysis:
Selected Topics, Vladikavkaz, SMI VSC RAS, 2014, iv+400 p. (Trends
in Science: The South of Russia. A Mathematical Monograph. Issue 6).