Abstract: In this paper, we study and introduce the majorization properties of a new class of analytic \(p\)-valent functions of complex order defined by the generalized hypergeometric function. Some known consequences of our main result will be given. Moreover, we investigate the coefficient estimates for this class.
For citation: El-Yagubi E., Darus M. A study on a class of \(p\)-valent functions associated with generalized hypergeometric functions. Vladikavkazskii matematicheskii zhurnal [Vladikavkaz Math. J.], vol. 17, no. 1, pp.31-38. DOI 10.23671/VNC.2015.1.7288 DOI 10.23671/VNC.2015.1.7289
1. Selvaraj C., Karthikeyan K. R. Differential Subordination and
Superordination for Certain Subclasses of Analytic Functions. Far
East J. of Math. Sci., 2008, vol. 29, no. 2, pp. 419-430.
2. El-Ashwah R. M. Majorization Properties for Subclass of Analytic
\(p\)-Valent Functions Defined by the Generalized Hypergeometric
Function. Tamsui Oxf. J. Math. Sci., 2012, vol. 28, no. 4, pp.
395-405.
3. Dziok J., Srivastava H. M. Classes of Analytic Functions
Associated with the Generalized Hypergeometric Function. Appl. Math.
Comp., 1999, vol. 103, no. 1, pp. 1-13.
4. Selvaraj C., Karthikeyan K. R. Univalence of a General Integral
Operator Associated with the Generalized Hypergeometric Function.
Tamsui Oxf. J. Math. Sci., 2010, vol. 26, no 1, pp. 41-51.
5. Hohlov J. E. Operators and Operations on the Class of Univalent
Functions. Izv. Vyssh. Uchebn. Zaved. Mat., 1978, vol. 10, no. 197,
pp. 83-89.
6. Salagean G. S. Subclasses of Univalent Functions. Complex
Analysis-Fifth Romanian-Finnish Seminar. Part 1, Berlin, Springer,
1981, pp. 362-372 (Lecture Notes in Math., vol. 1013).
7. Al-Oboudi F. M. On Univalent Functions Defined by a Generalized
Salagean Operator. Int. J. Math. Math. Sci., 2004, no. 25-28, pp.
1429-1436.
8. Ruscheweyh S. New Criteria for Univalent Functions. Proc. Amer.
Math. Soc., 1975, vol. 49, pp. 109-115.
9. El-Yagubi E., Darus M. A New Subclass of Analytic Functions with
Respect to \(k\)-symmetric Points. Far East J. of Math. Sci., 2013, vol.
82, no. 1, pp. 45-63.
10. Carlson B. C., Shaffer D. B. Starlike and Prestarlike
Hypergeometric Functions. SIAM J. Math. Anal., 1984, vol. 15, no. 4,
pp. 737-745.
11. Catas A. On Certain Class of p-valent Functions Defined by a New
Multiplier Transformations. Proceedings Book of the International
Symposium G. F. T. A., Istanbul, Istanbul Kultur University, 2007,
pp. 241-250.
12. Nasr M. A., Aouf M. K. Starlike Function of Complex Order. J.
Natur. Sci. Math., 1985, vol. 25, no. 1, pp. 1-12.
13. Altintas O., Ozkan O, Srivastava H. M. Majorization by Starlike
Functions of Complex Order. Complex Variables Theory Appl., 2001,
vol. 46, no. 3, pp. 207-218.
14. MacGregor T. H. Majorization by Univalent Functions. Duke Math.
J., 1967, vol. 34, pp. 95-102.
15. Darus M., Ibrahim R. W. Multivalent Functions Based on a Linear
Operator. Miskolc Math. Notes., 2010, vol. 11, no. 1, pp. 43-52.
16. Ibrahim R. W. Existence and Uniqueness of Holomorphic Solutions
for Fractional Cauchy Problem. J. Math. Anal. Appl., 2011, vol. 380,
pp. 232-240.