For citation: Magomed-Kasumov M. G. Basis property of the haar system in weighted variable exponent Lebesgue spaces // Vladikavkazskii matematicheskii zhurnal [Vladikavkaz Math. J.], vol. 16, no. 3, pp.38-46. DOI 10.23671/VNC.2014.3.10235
1. Sharapudinov I. I. Topology of the space Lp(t)([0, 1]). Math.
Notes of the Academy of Sciences of the USSR, 1979, vol. 26, no. 4,
pp. 796-806.
2. Sharapudinov I. I. Nekotorye Voprosy Teorii Priblizhenij v
Prostranstvah Lebega s Peremennym Pokazatelem, Vladikavkaz, UMI VNC
RAN i RSO-A, 2012, 267 p. (Russian).
3. Diening L., Harjulehto P., Hasto P., Ruzicka M. Lebesgue and
Sobolev Spaces with Variable Exponents, Berlin, Springer, 2011, 509
p.
4. Sharapudinov I. I. On the basis property of the Haar system in
the space Lp(t)([0,1]) and the principle of localization in the
mean. Math. of the USSR-Sbornik, 1987, vol. 58, no. 1, pp. 279-287.
5. Sharapudinov I. I. Nekotorye voprosy teorii priblizhenij v
prostranstvah Lp(x). Anal. Math., 2007, vol. 33, no. 2, pp. 135-153.
6. Izuki M. Wavelets and modular inequalities in variable Lp
spaces. Georgian Math. J., 2008, vol. 15, no. 2, pp. 281-293.
7. Izuki M. Wavelets and Modular Inequalities in Variable Lp
Spaces, 2007 (Preprint).
8. Magomed-Kasumov M. G. Convergence of Fourier - Haar Rectangular
Sums in Lebesgue Spaces with Variable Exponent Lp(x,y). Izv. Saratov
Univ. (N.S.). Ser. Math. Mech. Inform., 2013, vol. 13,no. 1(2), pp.
76-81 (Russian).
9. Sharapudinov I. I. Uniform boundedness in Lp
(p=p(x)) of some families of convolution operators. Math. Notes,
1996, vol. 59, no. 2, pp. 205-212.
10. Diening L., Hasto P. Muckenhoupt Weights in Variable Exponent Spaces, 2008 (Preprint).
11. Cruz-Uribe D., Diening L., Hasto P. The maximal operator on
weighted variable Lebesgue spaces. Fract. Calc. Appl. Anal., 2011,
vol. 14, no. 3, pp. 361-374.
12. Kashin B. S., Saakjan A. A. Ortogonal'nye Rjady, Moskva, Izd-vo
AFC, 1999, 560 p. (Russian).
13. Vulih B. Z. Vvedenie v Funkcional'nyj Analiz, Moskva, Nauka,
1967, 416 p. (Russian).
14. Sobol' I. M. Mnogomernye Kvadratnye Formuly i Funkcii Haara,
Moskva, Nauka, 1969, 288 p. (Russian).