Abstract: In this paper we generalize the Ostrowski inequality on time scales for \(n\) points and the \(L_p\) norm of \(m\)-th derivative, where \(m, n \in \mathbb N\) and \(p \in [1,+\infty].\)
Keywords: error inequalities, \(n\) knots, time scales
For citation: Dung P. T. , Chung N. T., Huy V. N. Error inequalities for some new quadrature formulas with weight involving \(n\) knots and the \(L_p\)-norm of the \(m\)-th derivative on time scales // Vladikavkazskii matematicheskii zhurnal [Vladikavkaz Math. J.], vol. 16, no. 3, pp. 9-21. DOI 10.23671/VNC.2014.3.10229
1. Anastassiou G. A., Dragomir S. S. On some estimates of the
remainder in Taylor's formula. J. Math. Anal. Appl., 2001, vol.
263, pp. 246-263.
2. Bohner M., Mathtthewa T. Ostrowski inequalities on time
scales. J. Inequal. Pure Appl. Math., 2008, vol. 9(1), article 6,
8p.
3. Bohner M., Mathtthewa T. The Gruss inequality on time scales.
Commun. Math. Anal., 2007, vol. 3(1), pp. 1-8.
4. Dragomir S. S., Wang S. An inequality of Ostrowski Gruss's
type and its applications to the astimation of error bounds for
some special means and for some numercial quadrature rules.
Comput. Math. Appl., 1997, vol. 33, pp. 15-20.
5. Huy V. N., Ngo Q. A. New inequalities of Ostrowski-like type
involving n knots and the Lp-norm of the m-th derivative. Appl.
Math. Lett., 2009, vol. 22, pp. 1345-1350.
6. Huy V. N., Ngo Q. A. A new way to think about Ostrowski-like
type inequalities. Comput. Math. Appl., 2010, vol. 59, pp.
3045-3052.
7. Huy V. N., Ngo Q. A. New inequalities of Simpson-like type
involving k nots and the m-th derivative. Math. Comput. Modelling,
2010, vol. 52, pp. 522-528.
8. Hilger S. Ein Mabetakettenkalkul mit Anwendung auf
Zentrmsmannigfaltingkeiten. PhD thesis, Univarsi. Wrzburg, 1988.
9. Huy V. N., Ngo Q. A. New inequalities of Simpson-like type
involving k nots and the m-th derivative. Math. Comput. Modelling,
2010, vol. 52, pp. 522-528.
10. Matic M. Improvement of some inequalities of Euler-Gruss type.
Comput. Math. Appl., 2003, vol. 46, pp. 1325-1336.
11. Liu W., Ngo Q. A. A generalization of Ostrowski inequality on
time scales for k points. Appl. Math. Comput., 2008, vol. 203(2),
pp. 754-760.
12. Ostrowski A. M. Uber die absolutabweichung einer
differentiebaren funktion vom ihrem integralmitelwert. Comment. Math. Helv., 1938, vol. 10, pp. 226-227.
13. Ujevic N. Error inequalities for a quadrature formula of open
type. Rev. Colombiana Mat., 2003, vol. 37, pp. 93-105.
14. Ujevic N. Error inequalities for a quadrature formula and
applications. Comput. Math. Appl., 2004, vol. 48, pp. 1531-1540.
15. Ujevic N. New error bounds for the Simpsons quadrature rule and
applications. Comput. Math. Appl., 2007, vol. 53, pp. 64-72.
16. Ujevic N. Sharp inequality of Simpson type and Ostrowski type.
Comput. Math. Appl., 2004, vol. 48, pp. 145-151.
17. Nikol'ski S. M. Quadrature Formulas. Moscow, Nauka, 1974, 224 p.
(in Russian).
18. Krylov V. I. Approximating computation of integrals. Moscow,
Nauka, 1967. 500 p. (in Russian).
19. Bernstein S. N. About Cotes's and Chebyshev's quadrature
formulas, Collection of theses. Moscow, Nauka, 1954, vol. 2, pp.
200-204 (in Russian).
20. Bernstein S. N. About one system of undefined equations,
Collection of theses. Moscow, Nauka, 1954, vol. 2, pp. 236-242.