Abstract: The error estimate for continuous singular integral and the discrete ones in multi-dimensional space is obtained. The use of fast Fourier transform for finding approximate solutions for equations with such operators is suggested.
Keywords: Calderon-Zygmund kernel, symbol, discrete singular integral operator, approximate solution, fast Fourier transform
For citation: Vasil'ev A. V., Vasil'ev V. B. Approximate solutions for multi-dimensional singular integral equations and fast algorithms for their solving. Vladikavkazskii matematicheskii zhurnal [Vladikavkaz Math. J.], vol.
16, no. 1, pp.3-11.
DOI 10.23671/VNC.2014.1.7417
1. Abdullaev S. K. Mnogomernyj singuljarnyj integral v prostranstve
Gel'dera s vesom. Sovremennye problemy teorii funkcij. Materialy
Vsesojuznoj Shkoly po Teorii Funkcij, Baku, AGU, 1980, pp. 43-48
(Russian).
2. Abdullaev S. K., Vasil'ev V. B. Ob odnoj kubaturnoj formule dlja
mnogomernogo singuljarnogo integrala po ogranichennoj m-mernoj
oblasti. Dokl. AN Azerb. SSR, 1983, no. 11, pp. 16-19 (Russian).
3. Abdullaev S. K., Vasil'ev V. B. K priblizhennomu resheniju
mnogomernyh singuljarnyh integral'nyh uravnenij. Priblizhennye
Metody Reshenija Differencial'nyh i Integral'nyh Uravnenij, Baku,
AGU, 1983, pp. 17-26 (Russian).
4. Vasil'ev A. V., Vasil'ev V. B. O diskretnyh svertkah. Tr.
Mezhdunar. Shkoly-Semin. “Metody diskretnyh osobennostej v zadachah
matematicheskoj Fiziki”, Orel, 2009, vyp. 7, pp. 31-35 (Russian).
5. Vasil'ev A. V., Vasil'ev V. B. Diskretnye operatory Kal'derona -
Zigmunda: nekotorye nabljudenija.Tr. XIV Mezhdunar. Simpoziuma
“Metody Diskretnyh Osobennostej v Zadachah Matematicheskoj Fiziki” .
Ch. 2, Har'kov-Herson, 2009, pp. 257-260 (Russian).
6. Vasil'ev A. V., Vasil'ev V. B. Diskretnye variant nekotoryh
integral'nyh operatorov i uravnenij. Tr. Mezhdunar. Shkoly-Semin.
“Metody Diskretnyh Osobennostej v Zadachah Matematicheskoj Fiziki”,
Orel, 2010, vol. 8, pp. 29-33 (Russian).
7. Vasil'ev A. V., Vasil'ev V. B. Chislennoe reshenie nekotoryh
klassov dvumernyh singuljarnyh integral'nyh uravnenij. Tr. XV
Mezhdunar. Simpoziuma “Metody Diskretnyh Osobennostej v Zadachah
Matematicheskoj Fiziki”, Har'kov-Herson, 2011, pp. 108-111
(Russian).
8. Mikhlin S. G., Prossdorf S. Singular Integral Operators, Berlin,
Akademie-Verlag, 1986, 528 p.
9. Gohberg I. C., Fel'dman I. A. Uravnenija v Svertkah i
Proekcionnye Metody ih Reshenija, Moskva, Nauka, 1971, 352 p.
(Russian).
10. Simonenko I. B. Lokal'nyj Metod v Teorii Invariantnyh
Otnositel'no Sdviga Operatorov i ih Ogibajushhih, Rostov-na-Donu,
CVVR, 2007, 120 p. (Russian).
11. Mihlin S. G. Mnogomernye Singuljarnye Integraly i Integral'nye
Uravnenija, Moskva, Fizmatgiz, 1962, 256 p. (Russian).
12. Sobolev S. L. Vvedenie v Teoriju Kubaturnyh Formul, Moskva,
Nauka, 1974, 707 p. (Russian).
13. Parton V. Z., Perlin P. I. Metody Matematicheskoj Teorii
Uprugosti, Moskva, Nauka, 1981, 688 p. (Russian).
14. Mihlin S. G., Morozov N. F., Paukshto M. V. Integral'nye
Uravnenija Teorii Uprugosti, SPb, Izd-vo SPbGU, 1994, 272 p.
(Russian).
15. Nussbaumer G. Bystroe Preobrazovanie Fur'e i Algoritmy
Vychislenija Svertok [Fast Fourier Transform and Convolution
Algorithms Second Corrected and Updated Edition], Moskva, Radio i
Svjaz', 1982, 248 p. (Russian).
16. Oppengejm A., Shafer G. Cifrovaja Obrabotka Signalov
[Discrete-Time Signal Processing], Moskva, Tehnosfera, 2009, 856 p.
(Russian).
17. Vasilyev V. B. On certain continual and discrete onvolution
operators. Proc. MATHMOD Vienna 09. 6th Vienna Conf. on Math.
Modeling (February 11-13, 2009, Vienna University of Technology).
Full Papers CD Volume, Eds. I. Troch, F. Breitenecker. Argesim
Report no. 35, pp. 2616-2618.
18. Gavurin M. K. Lekcii po Metodam Vychislenij, Moskva, Nauka,
1971, 248 p. (Russian).