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Abstract. It is well-known that the theory of mappings with bounded distortion was laid by
Yu. G. Reshetnyak in 60-th of the last century [1]. In papers [2, 3], there was introduced the two-index
scale of mappings with weighted bounded (g, p)-distortion. This scale of mappings includes, in particular,
mappings with bounded distortion mentioned above (under ¢ = p = n and the trivial weight function).
In paper [4], for the two-index scale of mappings with weighted bounded (g, p)-distortion, the Poletsky-
type modulus inequality was proved under minimal regularity; many examples of mappings were given
to which the results of [4] can be applied. In this paper we show how to apply results of [4] to one such
class. Another goal of this paper is to exhibit a new class of mappings in which Poletsky-type modulus
inequalities is valid. To this end, for n = 2, we extend the validity of the assertions in [4] to the limiting
exponents of summability: 1 < ¢ < p < oo. This generalization contains, as a special case, the results
of recently published papers. As a consequence of our results, we also obtain estimates for the change in
capacity of condensers.
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1. Introduction

The goal of this work is to show the application of results of [4] for output of Poletsky-type
modulus inequalities for some classes of mappings. For doing this we formulate first the main
result of [4], and then we provide how it can be applied for some concrete classes of mappings.

The main classes of mappings studied in [4] were defined in |2, 3].

DEFINITION 1. Let w: R®™ — [0,00] be a measurable function, called a weight, with
0 < w < oo holding ##"-almost everywhere, and 2 C R™ is a domain in R". A mapping
f:Q — R”withn > 2 is called a mapping with (inner) bounded w-weighted (q, p)-codistortion,
or briefly, f € S 2(Q;q,p;w, 1), where n — 1 < ¢ < p < oo, whenever

(1) f is continuous, open and discrete;

(2) f belongs to the Sobolev class W! | (Q);

(3) the Jacobian determinant satisfies det D f () = 0 for almost all x € Q;

# The study was carried out within the framework of the State contract of the Sobolev Institute of
Mathematics, project Ne FWNF-2022-0006.
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(4) the mapping f has bounded codistortion: adj Df(x) = 0 a.e. on the set Z = {x € Q :
det Df(xz) = 0};
(5) the local w-weighted (g, p)-codistortion function

n—1
w 7 (2)adjDf ()] if detDf(x)#0
Q3w Ayt (2, [) =1 D@ T e W

0 otherwise,

belongs to L,(£2), where p satisfies % =n-l _ n-l while p = oo for ¢ = p.

q P

Put 5 (f392) = || a5 () | Lo(Q)]].

DEFINITION 2. Let w: R®™ — [0,00] be a measurable function, called a weight, with
0 < w < oo holding #"-almost everywhere, and 2 C R™ is a domain in R”. A mapping
f:Q — R™ with n > 2 is called a mapping with (outer) bounded w-weighted (q, p)-distortion,
or briefly f € 02(Q;q,p;w, 1), with n — 1 < ¢ < p < 0o, whenever:

(1)f is continuous, open and discrete;

(2) f belongs to the Sobolev class W | Joc(§2);

(3) the Jacobian determinant satlsﬁes det Df(z) > 0 for a.e. z € £

(4) the mapping f has bounded distortion: Df(xz) = 0 a.e. on the set Z = {x € Q :
det Df(xz) = 0};

(5) the local w-weighted (g, p)-distortion function

1
w(@)|Df (@)
QB&UI—)K;},})I(x,f): deth(x)%
0 otherwise,

ifdet Df(z) #0

belongs to L, (2), where s satlsﬁes l

Put Kqp (f;Q) = || Koy (- H
REMARK 1. It is established in [3] that

%,While%:ooforq:p.

09 q,p;w,1) C ID(Q;q,p;w,1) (3)

incaseof n — 1 < g < p<oo.

For justifying (3) we refer to [3, Theorem 8| where it is proved that every mapping
[:Q=>Qof OD(Q;q,p;w,1),n—1 < g < p < oo, belongs also to the class & 2(Q; q, p; w, 1),
and the estimate

~1
155" C ) | L@ < 1By () LA (4)
holds. (Here ¢ and s are defined after formulas (1) and ( ) respectively).

In [4] it was proved the following result.

Theorem 1 [4, Theorem 4.1]. Let n — 1 < g < p < oo. Suppose that f : Q — R" i
a mapping with with inner bounded w- We1ghted (g, p)-codistortion (f € P (Q;q,p;w, 1))

while the weight function 0(x) = w - T (x) is locally summable. IfT" is a family of curves
in the domain ) then we have the inequality

(mod, f(T))"* < 251 (f; ) (mod? T) ", (5)

: —_ P - _q
with s = po oy and r = ey
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Below we recall the concept of the modulus of a family of curves (see [4] for more details).

A curve in R™ is a continuous mapping «: I — R™, where [ is an interval in R, that is,
a set of the form (a,b), where each angular parenthesis can be either round or square, a,b € R
with a < b. We also allow infinite intervals. A curve « is called closed (open) if the interval I
is compact (open). Put || = «(I). The expression v/ C 7 will mean that the curve v/ is
a restriction of the curve v to a subinterval or a point.

If a: I = [a,b] — R™ is a closed curve then its length is

)

!
la) = SUPZ |a(ti) — altiy)
i=1

where the supremum is taken over all finite partitions @ = t; < t2 < ... <t < {41 = b
If a curve « is not closed then put its length equal to ¢(a)) = sup ¢(as), where the supremum
is taken over all closed subintervals J of I.

A curve a: I — R” is called rectifiable whenever f(a) < oo. A curve is called locally
rectifiable if each closed subcurve of it is rectifiable.

Consider a closed curve a: [a,b] — R™ and suppose that it is rectifiable. Define a function
Sq: [a,b] — R by the equality s, (t) = E(a“a’ﬂ). For the rectifiable curve o there exists
a unique curve a: [0,/(a)] — R™ obtained from a by a monotonely increasing change of
parameter such that s,o(t) = ¢t and a = o’ o s, [5, Section 2.4]. The curve a is called the
positive natural parametrization of a.

Take a Borel set A C R™ and a Borel function p: A — [0,00]. The integral of p along
a rectifiable curve a: [a,b] — R"™ is defined as

/pds = 7)p(a0(7)) d(r)
a 0

with an usual Lebesgue integral in the right-hand side. If « is absolutely continuous then so is

the function s, (t) = [a,b] — [0,4(a)]. Putting 7 = s,(t) in the last integral, using the change-

of-variables theorem for Lebesgue integrals, and accounting for &(t) = d%ao(sa(t)),éa(t) and

d%ao(T) = 1, we infer that

b
/ pds = / pla(®))|a ()| d (1) (6)

Observe that by the change of variable formula we can express this as

b

/ pds = / pla()|a ()| dA (1) = / p(y) N (., [a, b)) A (y), (7)

[e% a \a|

where A (y, o, [a,b]) = #{[a,b] N a~!(y)} is the Banach indicatrix.
For a locally rectifiable curve a: I — R"™, put

/,Ods ZS%p/pds, (8)
B

07

where the supremum is taken over all closed subcurves § of a.
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Consider a family I' of curves in R”, where n > 2. A Borel function p: R® — [0, 00] is
called admissible for I" whenever

/pds>1 9)

Y

for each locally rectifiable curve v € I'. Denote the collection of all admissible functions by
admI'. Given a weight function : R™ — (0, 00) and a number p € [1,00), define the §-weighted
p-modulus of T as
mod/ T = . / PO dA".
R?’L

Properties of the weight function will be prescribed separately; at least, we assume that it
is locally summable and 0 < € < oo holds 7#"-almost everywhere. For § = 1 we obtain the
usual definition of p-modulus, and instead of modzl,I’ we write mod, I'. If admI' = & then
we put modgf = 00; this case is realized only if I" contains at least one curve determining
a constant mapping.

REMARK 2. The definition of modulus implies that every family of curves which are not
locally rectifiable has zero modulus. Moreover, if I is a family of curves and I'y = {y € T":
~v is locally rectifiable} then modg(F) = modﬁ(Fl).

Suppose that « is a rectifiable closed curve in R™. A mapping g¢: || — R™ is called
absolutely continuous on « if the composition g o a® is absolutely continuous on [0, £(c)].

Theorem 2 [5, Fuglede’s Theorem; 6]. Suppose that f:  — R"™ is a mapping of class
Wpl(Q) with 1 < p < oo, and I is a family of locally rectifiable curves in ) such that each
curve has a closed subcurve on which f is not absolutely continuous. Then mod,I' = 0.

2. Modification of Theorem 1 in the case of n =2 and p =

In this case parameters ¢,p may be taken within (1,00 1 < ¢ < p < oo. The case
1 < g < p < oo is taken into consideration in Theorem 1.

Theorem 3. Let 1 < ¢ < p = oco. Suppose that Q C R? is a domain, and f: Q — R?
is a mapping with inner bounded w-weighted (q,cc)-codistortion (f € % 2(;q,00;w, 1)),
1
while the weight function 6(x) = w™ -1 (z) is locally summable. If T is a family of curves in
the domain ) then we have the inequality

(mod; f(I) < g% (f: ) (mod] T)/" (10)

with r = L.
q—1

In this theorem ;%2 (f;9Q) = H%{fgé(,f) | L(Q)]]-

Theorem 4. Suppose that 2 C R? is a domain, and f: Q — R? is a mapping belonging
to the Sobolev class Wll,loc(Q) with the nonnegative Jacobian determinant: det D f(x) > 0 for
almost all x € §). Assume that

1) f is continuous, open and discrete;

(2) the mapping f has bounded codistortion: adj D f(x) =0 a. e. on the set Z = {x € Q0 :
det Df(x) = 0}.

! In the case p = oo we have to replace det Df(x)% in (1) by 1.
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Let, for a weight w: R™ — [0, 00|, (00, 00)-codistortion function

(11)

0550 KL (0, f) = {w(x)]adj Df(z)| if det Df(x) >0
’ 0 otherwise,
belongs to Loo(€2) (in another words f € ¥ 2(§; 00, 00;w, 1)). If the weight function 0(x) =
w™(z) is locally summable then, for any family of curves I' in the domain (2, we have the
inequality
mody f(I') < AL (f; Q) mod{T. (12)

In this theorem 3 (f;Q) = Hc%/ogc{o(af) | Lo (Q)]-
Theorems 3 and 4 will be proved in Section 6.

3. Application

In paper [7, Example 32| the following class of mappings is considered. Suppose that
n —1 < p < oo, and consider a continuous, open and discrete mapping f : D' — R™ of an
open connected domain D’ C R™, where n > 2, such that

(1) f €Wy 00 (D)

(2) det Df(y) > 0 and f has finite codistortion; i.e., adj D f(y) = 0 s ™-almost everywhere
on Z={yeD':detDf(y) =0};

(3) the inner operator distortion function

Mf@ml if det Df(y) # 0

D' sy— A (y, f) = { det DI (13)
0 otherwise,
belongs to Ly joc(D’), where % = % . —1 holds with s = (np_fll)p >n—1;
(4) the weight function o defined a;
ladj Df (I N
o(y) = 4 DI ify e DN, (14)
1 otherwise,

is in € Ly joc (D'), here Z' = {y € D' : Df(y) = 0}.

Taking into acount saying above we see that f : D’ — D meets the assumptions
of Theorem 1 with D’ instead of €:

(20) f € WL, 0 (D)

(2b) det D f(y ) > 0 and f has finite codistortion;
(2¢) f: D' — D is a mapping of bounded w-weighted (s, s)-codistortion with w(y) =

1
o -1 (y), that is, the w-weighted (s, s)-codistortion function

W' (y )IadJDf( ) I
fJ(y, 0,
D' '3y 5y, f) = det Df(y)"s I £ #

0 otherwise,

belongs to Lo (D') and
151 Co ) | Lo (D) =1 (15)

(the last equality is proved in |7, Theorem 3] under more general assumption).
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Taking into account saying above, by Theorem 1, we come to the following statement.

Proposition 1. Suppose that a continuous, open and discrete mapping f : D' — R™ of
an open connected domain D’ C R"™, where n > 2, has the following properties:

(1) f €W 0o (D):

(2) det Df(y) > 0 and f has finite codistortion (adj D f(y) = 0 #"-almost everywhere
onZ={ye D :detDf(y) =0});

(3) the inner operator distortion function

RAIPIWI - if det Df (y) # 0,

D'5yw A0 (y, f) = detDIw)s (16)
0 otherwise,
belongs to Ly 1oc(D’) with some p > n—1, where % = Z—j —”Tfl holds with s = (np_%l)p >n—1.
IfT is a family of curves in the domain D’ then we have the inequality
mod, f(I') < mod) T’ (17)

where the weight function o is defined in (7).

< When deriving inequality (17) the properties (2a)—(2c) formulated above, should be
taken into account. Really, we see that f € S P(Q;q,p;w,1) with ¢ = p = s and w(y) =

Jfﬂ%l(y). Therefore, by Theorem 1, we get the inequality
1/s' wl(e. 0 /s
(mods/f(F)) < AL (ﬂD)(mods, F)

with §" = -—"—; (here HEGH D) = |10 f) | Loo(D))]). Because of (15), s' = p and
0(y) = wfﬁ(y) = o(y) inequality (17) holds. >
Taking into account [2, Theorem 34| or [4, Theorem 5.2| and its proof we come to
Proposition 2. Suppose that for a continuous, open and discrete mapping f : D' — R™

of an open connected domain D' C R"™, where n > 2, conditions of Proposition 1 hold.
If E = (A, C) is a condenser in (2, then the estimate holds: cap,, f(E) < capj E.

4. The special case of the mappings under consideration: n = 2

In the case n = 2 we have the following modification of the results of the previous section.

We have 1 < p < oo and a continuous, open and discrete mapping f : D’ — R? of on open
connected domains D’ C R? such that

(1) f € Wll,loc (D/);

(2) det Df(y) > 0 and f has finite codistortion; i. e., adj D f(y) = 0 #?-almost everywhere
onZ={yeD':detDf(y) =0};

(3) the inner operator distortion function

| - [diDIWL i et Df(y) # 0,
D 3y|—>%i(y7f): det D f(y)
s 0 if det Df(y) =0,

belongs to Ly joc(D’).
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(4) the weight function o defined as

DI e ¢ pi
dw:{wm@w e, (19

1 otherwise,

is in € Ly joc (D'), here Z' = {y € D' : Df(y) = 0}.

It is not hard to see that the continuous, open and discrete mapping f : D’ — R? meets
the assumptions of Proposition 1 under n = 2:

(3a) f € W}, (D):

(3b) f has finite distortion;

(3¢) f: D' — D is a mapping with bounded w-weighted (p’, p’)-distortion where p’ = 1%

1
and w(y) = o~ »=1(y), that is the w-weighted (p’, p’)-distortion function

w7 (y)|IDF ()]

» if det Df(y) # 0,
D/ ByHKp/7p/(y,f) = deth(y)p_ll
0 otherwise,
belongs to Lo (D'), and
K 0) | EaelD) = 1 "

Taking into account saying above, by Proposition 1, we come to the following statement.

Corollary 1. Suppose that a continuous, open and discrete mapping f : D' — R?
of an open connected domain D' C R? has the following properties:

(1) fe Wiloc (D');

(2) f has finite codistortion (adjDf(y) = 0 s#?-almost everywhere on Z =

{ye D': det Df(y) = 0});
(3) the inner operator distortion function

AediDIWL i det Df (y) # 0,

D3y Ay, f) = { det D)7 (20)
0 otherwise,
belongs to Lmoc(D’) with some p > 1, where % + 1% =1.
IfT is a family of curves in the domain D' then we have the inequality
mod, f(I') < mody T’ (21)

holds where the weight function o is defined in (18).

5. One more special case of the mappings under consideration: n =2 and p=1

In this section we prove that Corollary 1 is valid also in the case p = 1. To show this
we have to modify some arguments of the previous section. A counterpart of Corollary 1 is
formulated in the following statement.

Proposition 3. Suppose that a continuous, open and discrete mapping f : D' — R? of
an open connected domain D' C R? has the following properties:
(1) f e Wi (D);
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(2) det Df(y) > 0 and f has finite codistortion (adj D f(y) = 0 #>-almost everywhere on
Z ={y e D'[det Df(y) = 0});

(3) the inner operator codistortion function

dj D if det D 0
’ 0 otherwise,
belongs to L 1oc(D’).
IfT is a family of curves in D' then we have
mod; f(I') < modj T (23)

with o defined in (25).

<1 We show that the proof of Proposition 3 can be reduced to Theorem 3. For doing this
formulate first additional properties of f and ¢ = f~1.

PROPERTIES OF ¢ = f~'. If f : D' — D is a homeomorphism then the inverse
homeomorphism ¢ = f~': D — D’ enjoys the following properties:

(4) by [9, Theorem 4| or [7, Theorem 27| we have ¢ € WilOC(D) (see also [10,
Theorem 3.2|);

(5) ¢ has finite distortion by [7, Theorem 27| (see also [10, Theorem 3.3]);

(6) ¢ is differentiable a. e. in D by [7, Theorem 27|;
while f: D' — D

(6) ¢ belongs to 211 (D, D';0) (see [4]), that is the distortion function

__ De@| .
D>x+— Kllf(x’ SD) — {0(<p(aﬂ))det Dyp(z) if det D(P(x) 7é 0,

0 if det Dp(x) =0,
of the inverse mapping ¢ = f~! with the weight function o € L1 joc (D') defined as

o) = {| adj Df(y)| ity e D\Z'

where Z' = {y € D' : D =0t, 25
1 otherwise, {y U } (25)

is in Loo(D) and Kllf(go; D)= HKllf(-,gp) | Loo(D)|| =1 (see [4, Theorem 25, formulas (30)
and (37); 8|).

PROPERTIES OF f. Taking into account saying above, we see thatf : D’ — D meets some
additional properties:

(7) f e Wl (D) and f is differentiable a.e. in D’ by [7, Theorem 27];

(8) det Df(y) > 0 and f has finite distortion by [7, Theorem 27| (see also [10,
Theorem 3.3|);

(9) f: D' — D is a mapping with bounded w-weighted (0o, 00)-codistortion with the
weight function w = o~!, that is the w-weighted (0o, c0)-codistortion function

w(y)ladjDf(y)|  if det Df(y) # 0,
0 otherwise,

D'sy— A2 (y, f) = {
belongs to Lo (D’), and
AL 1) | Loo (D)) = | ELY (- 0) | Loo(D)|| = 1. (26)

Now it is evident that f enjoys the conditions of Theorem 3, and therefore (23) holds
for f. >



66 Vodopyanov, S. K.

6. Proof of Theorems 3 and 4

< We verify that the proof of Theorem 1 given in [4, Theorem 4.1] for mappings with
bounded §-weighted (g, p)-codistortion, where n — 1 < ¢ < p < oo, works also in the case
1 < qg<p=o0atn=2 To do this we need properties of Poletsky function and Poletsky’s
Lemma in this case. We formulate and prove them below. >

1. Properties of Poletsky function. Take a continuous mapping f : Q@ — R? and
a domain D compactly embedded into €2, meaning that D is bounded and D C €, written
briefly as D € , and take y ¢ f(0D). Denote by u(y, f, D) the degree of f at y with
respect to D. Say that f is sense-preserving whenever pu(y, f, D) > 0 for all domains D € Q
and all points y € f(D)\f(OD). For A C € refer as the multiplicity function to R? > y
N(y, f,A) =# {f_l(y) N A}. Moreover, put N(f, A) = sup,cg2 N(y, f, 4).

Suppose that f : @ — R? is a continuous, open, and discrete mapping. A domain D € € is
called normal whenever f(0D) = df(D). A normal neighborhood of z € € is a normal domain
U C Q such that U N f~1(f(z)) = {z}. The quantity i(z, f) = u(f(x), f,U) is independent
of the choice of a normal neighborhood U of x (see [11, Chapter 11, §2] for instance) and is
called the local index of f at x. A point = € ) is called a branch point of f whenever f is not
a homeomorphism of any neighborhood of z. Denote the collection of all branch points of f
by By. If D is a normal domain for a mapping f then u(y, f, D) is independent of y € f(D).
We will call this constant by u(f, D).

In the following two lemmas we state propositions of interest in their own right. Both
of them are applied in the proof of the main result of this section.

Lemma 1 [3, Lemma 10]. Assume that f : Q — R? is a continuous, open and discrete
mapping in WilOC(Q) with finite distortion. Then for every open connected set U C €) the set
{x € U\By : J(x, f) # 0} has positive measure.

< If, on the contrary, J(z,f) = 0 a.e. on a connected set U C Q\By on which f
is a homeomorphism then Df(z) = 0 a.e. on U because f has finite distortion. Then f
is constant on U, and consequently, f cannot be open. >

Proposition 4. If f : Q — R? is a continuous, open and discrete mapping in Wllloc(Q)
with finite distortion, then f is differentiable a.e. on Q\By and sense-preserving.

< For a connected open set U C Q\Bf on which f is a homeomorphism, it is enough
to apply the statement [9, Theorem 4| or |7, Theorem 27| twice. For the restriction
flv: U — f(U) it provides that the inverse homeomorphism (f|y)~! : f(U) — U is in
WL(f(U)), is of finite distortion, and is differentiable a.e. on f(U). Then applying |7,
Theorem 27| to (f|ly)~! : f(U) — U we get similar properties to the given mapping
flu : U = f(U). By Lemma 1, det Df(z) > 0 and properties of degree we conclude that f
is sense-preserving. [>

DEFINITION 3. For a sense-preserving, continuous, open and discrete mapping f : Q — R?
and a normal domain D € , define the Poletsky function gp : V. — R? on V = f(D) [12]
by putting

Vay—gnly)=A > i fe, (27)
zef~1(y)ND
where A = u(f, D).

The function of the form (27) was introduced by Poletsky in [12] for mappings with
bounded distortion (p = ¢ = n, w = 1). The next statement presents the properties of the
Poletsky function for the classes of mappings under consideration.
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Proposition 5 [2, 3|. Suppose that f : Q — R? belongs to 0%2(;00,00;w,1)
(properties (4a)—(4c) hold). Then

(1) the function gp defined in (27) is continuous and belongs to ACL(V');

(2) Dgp(y) =0 a.e. on Z' UY/;

(3) Poletsky function gp defined in (27) is in W} (V'); furthermore,

1Dgn | La(V)|| < A|| KL (- )]LOO(D)H/amdx

We emphasize that the formulated statement is proved in |2, Theorem 18| for mappings
feI2p,p;w, 1), p € (1,00). The same proof works also in the case p = co at n = 2.

2. Poletsky’s Lemma. Consider a continuous, open and discrete mapping f : Q — R2.
Take a closed rectifiable curve 8 : Iy — R™ and a curve o : I —  with foa C . In particular,
we have I C Iy. If the function sg : Iy — [0, ()] is constant on some interval J C I, then the
mapping [ is constant on J. In turn, since f is discrete, « is also constant on J. Consequently,
there exists a unique mapping o* : sg(I) — Q satisfying o = a* o sg[,. We can prove that o*
is continuous and f o a* C 8°. The curve o is called an f-representative of a (with respect
to 8 ) whenever = f o . Suppose now that f = f o . The above arguments show that

foa*=(foa).
Therefore, the curve foa* admits a positive natural parametrization, and hence it is Lipschitz.
Thus we can integrate along this curve using (6) where |% (foa*)(t)] =1 for #'-almost all
tel.

The mapping f is called absolutely precontinuous on « provided that o is absolutely
continuous.

Lemma 2. Suppose that f : Q — R? is a mapping of class .# 2(€; 00, 00; w, 1). Consider
a family ' of curves in ) such that for every v € I' the following holds: the curve f o~y is
locally rectifiable and « has a closed subcurve a on which f is not absolutely precontinuous.
Then mod; f(I") =0

The formulated Lemma is proved in [4, Lemma 3.3] for mappings f € £ 2(Q;p, p;w, 1),
p € (1,00). The same proof works also in the case p = co at n = 2.

In the proof of Lemma 2 we also need the following statement.

Lemma 3. Consider a homeomorphism ¢ : Q — Q' of class ¥ 2(;q,00;6,1), where
0,9 cR?and 1 < g < 0.

Then

(1) the inverse homeomorphism is o~ € Wl

(€7);
(2) ¢! has finite distortion: Dyp~1(y) = 0 almost everywhere on Z';
(3) Ki’f(-,gp‘l) € L,(€), where
. -1 .
. g ifg <o, " 6 a1 if ¢ < oo,
1 if g = o0 61 if g = o0
(4) if the weight function w is locally summable then the inverse homeomorphism induces,
by the change-of-variable rule, the bounded operator
9071* : L},(Q,w) N Wolo,loc - L% (QI)
We have the relations

I3 G ™) 1 L@ = (|5 0) | Lo(@)
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and
Baoo [ KL (0™ ) | Lo(@)|| < o™ Il < | ELECLe™h) | Lo()

where 3, ~ is some constant.

)

< Properties (1) and (2) of ¢ = f~1 were proved just after Proposition 3. Taking into
account (1) and (2) Properties (3) and (4) can be proved by analogy with Theorem 9 of [2]. >

REMARK 3. By means of Theorems 3 and 4 for homeomorphisms ¢ : Q — ' of class
I P(;q,00;0,1), where Q,Q € R? and 1 < ¢ < 0o, we can prove some more inequalities
such that Viisild inequality and the capacity inequality (see proofs in [4, Theorem 22| and
[4, Theorem 28| respectively).

REMARK 4. It is not hard to see that assumptions of Theorem 4 are weaker comparing
with those in paper [13]|. For instance, Theorem 1.3 of [13] is formulated under addition
condition that the given mapping is closed. Therefore Theorem 4 with weaker assumptions
contains the main result of paper [13].

Acknowledgements. I greatly appreciate the anonymous reviewers for critically reading and
comments, which helped improve the initial manuscript.
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BiajmkaBkazckuii MaTeMaTHIECKHH Ky pPHAJT
2022, Tom 24, Beinyck 4, C. 5869

O MOJLYJ/IbHBIX HEPABEHCTBAX TUITA ITOJIEHHKOT'O
JJ1s1 HEKOTOPBIX KJIACCOB OTOBPAYKEHUI

Bomonbsiros C. K.

! Mucruryr maremarukn um. C. JI. CoGosesa,
Poccus, 630090, HoBocubupck, np-t Axkajgemuka Konriora, 4

E-mail: vodopis@math.nsc.ru

AnHOTaMsA. XOpOIIO U3BECTHO, YTO TEOPUs OTOOPAXKEHUIM C OrPAHUYEHHBIM MCKAaYKEeHHe ObLIa 3aJI0XKe-
Ha [O. I'. Pemernsikom B 60-€ rojbl MpOIILIOTO BeKa [1] B paborax [27 3] ObLIa BBEJIEHA, JIBYXWHJEKCHAST
IIKaJ18 0TOOPasKEHUIi ¢ BECOBBIM OTPAHMYEHHBIM (¢, P)-MCKazKEHUEeM. DTa KA OTOOPAXKEHNH BKIIIOUAET
B cebs1, B 9ACTHOCTH, OTOOPArKEHUsI C OrPAHUIEHHBIM MCKAZKEHUEM, YIIOMSIHYTbIE BbIe (Ipu ¢ = p = n
1 TpUBHAJBHON BecoBoil dyHkimu). B pabore [4] mis [ByXuHIEKCHOI MIKaIbl 0TOOparXKeHUH ¢ BECOBBIM
OrpaHWYIEHHBIM (¢, P)-MCKaXKeHUs JIOKA3AHO MOJYJIbHOE HEPABEHCTBO THIA 110/IenKOro npu MUHUMAIBHOR
PEryIsSIpHOCTH; IPUBEJIEHO MHOTO IIPUMEPOB OTOOPAKEHMH, K KOTOPBIM MOXKHO IIPUMEHUTD PE3YJILTATHI [4].
B sT0i1 cTaThe MBI IpUBEIEM OIHO TaKoe nmpuMeHenue. JIpyras 1e/1b 3Toit craThby — MOKa3aTh HOBBIA KJ1acC
0TOOparkeHnii, B KOTOPBIX BBIIOJHAIOTCS MOYJIbHBIE HepaBeHcTBa THHa [loserikoro. [1jist 9Toro Mel pacrm-
psIEM HpH N = 2 CIPaBeJIMBOCTD yTBEPXKIeHni paborel [4] Ha npeaenpable nokasarean: 1 < ¢ < p < 0.
D710 06061IIEHNE COTEPKUT B KAIECTBE YaCTHOTO CJIydasi pe3y/IbTaThl HeJIaBHO Oy bJIMKOBaHHBIX paboT. Kak
CJIEJICTBUE PE3YJIBTATOB TOM CTATHU MBI IOJIYyIaeM TAKZKE€ OIEHKHM M3MEHEHUsI eMKOCTH KOHJIEHCATOPOB.

KuroueBrble cioBa: KBa3MKOH(MOPMHBIN aHam3, npocTpancTtBo CobosieBa, MOMY/Ib CEMECTBa KPUBBIX,
OIIEHKA MO/LYJIsI.
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