Vladikavkaz Mathematical Journal
2022, Volume 24, Issue 4, P. 3047

VK 517.968
DOI 10.46698 /i8323-0212-4407-h

INVERSE PROBLEM FOR VISCOELASTIC SYSTEM
IN A VERTICALLY LAYERED MEDIUM#*

A. A. Boltaev!? and D. K. Durdiev!?

! Bukhara Branch of the Institute of Mathematics
at the AS of Uzbekistan, 11 M. Ikbal St., Bukhara 200117, Uzbekistan;
2 North Caucasus Center for Mathematical Research VSC RAS,
1 Williams St., village of Mikhailovskoye 363110, Russia;
3 Bukhara State University, 11 Muhammad Ikbal St., Bukhara 200117, Uzbekistan

E-mail: asliddinboltayev@mail.ru, d.durdiev@mathinst.uz, durdimurod@inbox.ru

Abstract. In this paper, we consider a three-dimensional system of first-order viscoelasticity equations
written with respect to displacement and stress tensor. This system contains convolution integrals of
relaxation kernels with the solution of the direct problem. The direct problem is an initial-boundary
value problem for the given system of integro-differential equations. In the inverse problem, it is required
to determine the relaxation kernels if some components of the Fourier transform with respect to the
variables z1 and x> of the solution of the direct problem on the lateral boundaries of the region under
consideration are given. At the beginning, the method of reduction to integral equations and the subsequent
application of the method of successive approximations are used to study the properties of the solution of
the direct problem. To ensure a continuous solution, conditions for smoothness and consistency of initial
and boundary data at the corner points of the domain are obtained. To solve the inverse problem by the
method of characteristics, it is reduced to an equivalent closed system of integral equations of the Volterra
type of the second kind with respect to the Fourier transform in the first two spatial variables z1, z2, for
solution to direct problem and the unknowns of inverse problem. Further, to this system, written in the
form of an operator equation, the method of contraction mappings in the space of continuous functions
with a weighted exponential norm is applied. It is shown that with an appropriate choice of the parameter
in the exponent, this operator is contractive in some ball, which is a subset of the class of continuous
functions. Thus, we prove the global existence and uniqueness theorem for the solution of the stated
problem.
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Introduction

A perfectly elastic material does not exist in nature; in fact, inelasticity is always present.

This inelasticity results in energy dissipation or damping. Therefore, for a wide class of
materials, it is not enough to use an elastic model to study their mechanical behavior.
Therefore, viscoelastic foundational models have often been used to model the behavior of
polymeric materials with respect to time variable.

#The research of the first author was financially supported by the Russian Foundation for Basic Research,

project Ne 075-02-2022-896.

(© 2022 Boltaev, A. A. and Durdiev, D. K.



Inverse Problem for Viscoelastic System in a Vertically Layered Medium 31

Let be T = (z1,z2,23) € R3. Let us denote by o0;; the projection onto the x; axis of the
stress acting on the area with the normal parallel to the x; axis, and u; are the projection
onto the x; axis of the vector particle displacement. According to Hooke’s law for viscoelastic
media, stresses and deformations are related by the formulas [1, pp. 449-455|, [2, ch. 3]:

ou; 0
0ij(T,t) = p <az + 8?) + i diva

t

ou; (9u] _ .

—|—/KU (t—1) [ <(93:j + 8£CZ> —i—5zj)\d1vu] (Z,7)dr, 1,7=1,2,3, (1)
0

here 1 = p(x3), A = A(x3) are Lame coeflicients, d;; is Kronecker symbol, K;;(t) are functions
responsible for the viscosity of the medium and K;; = Kj;, 4,5 = 1,2, 3.

The equations of motion of a viscoelastic body particles in the absence of external forces
have the form

9 3
p%;l - Z 807 i=1,2,3, (2)
j=1

where p = p(z3) is medium density, u(z,t) = (u1(Z,t),u2(T,t),us3(T,t)) is displacement
vector. Throughout this work, u, A, p are considered to be given functions.

Note that (1) can be considered as integral Volterra equations of the second kind with
respect to the expression u <8“' + au’ ) + 9;;Adivw, i,j = 1,2,3. For each fixed pair (i, )
solving these equations, we get

t
du; 0 -
0ii (T, t) = p <8z + 8?) + oA divu + /7",]( — 7)o (T, 7)dr, i,7=1,2,3, (3)
7 )

where r;; are the resolvents of the kernels K;; and they are related by the following integral
relations [3, 4]:

¢
ri;(t) = /KZ] (t —7)ryj(r)dr, i,j=1,2,3. (4)
0

From the condition K;; = Kj; implies the r;; = rj;.
Differentiating (3) with respect to ¢ and introducing the notation u; = %ﬂi, we get

t
0 ou; 0
agl-j(j,t) = (az + 8?) + 0i; A divu + 745(0)04(Z, 1) —|—/ T)oi; (T,7) dr.  (5)
J 1

0

Then the system of equations (1) and (2) for the velocity u; and strain o5 (0;; = 0j;) in
view of (3)—(5) can be written as a system of first-order integro-differential equations.

t

0 0 0 0

<A8t+B6—1+08—332+D6—333+F> /Rt—’T CE’T)dT, (6)
0
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where U = (u1, ug, us, 011,012,013, 022, 023, 033)™, * is the transposition sign,

(PI)3X3 (0)3><3 (0)3><3 (0)3><3 (_I)3x3 (0)3><3
A= (O)3><3 (I)3><3 (O)3><3 , B= (Bl)sxs (O)3><3 (O)3><3 ’
(0)3><3 (0)3><3 (I)3><3 (B2)3><3 (O)3><3 (0)3><3
—(A+2u) O 0 -2 00
B, = 0 —u 0 , By = 0o 0 0 |,
0 0 —u -2 00
(O)3><3 (Cl)3><3 (02)3><3 0 -10
C= (03)3><3 (0)3><3 (O)3><3 , Cr= 0 0 0 )
(04)3><3 (0)3><3 (O)3><3 0 0 0
0 0 0 0O =X 0 0 —(A+2u) O
Cy = -1 0 0], C3= - 0 0|, Csg=10 0 —u |,
0 -1 0 0 0 O 0 - 0
(0)3><3 (D1)3><3 (D2)3><3 00 —1
D=1 (D3)sxs (O)gys 3x3 |» Di=10 0 0 ’
(D4)3><3 (0)3><3 0)3><3 00 0
0 O 0 0O 0 =X\ 0 O -
Dy = 0 -1 O , D3= 0O 0 O , Dy=10 —pu 0 ,
0O 0 -1 w0 0 0 0 —(A+2p)
F = ( (0)3><3 ) (0)3><6 )
(O)gxs diag(r11(0),722(0),733(0),712(0),713(0),723(0)) )’
R(t) = < (O)3X3 . / /(O)/3X6/ / / > .
(O)st diag (711, 99, 733,712,713 7"23)

The system (6) can be reduced to a symmetric hyperbolic system [5].
We reduce the system (6) to canonical form with respect to the variables ¢ and x3. To do
this, multiply (6) on the left by A~! and compose the equation

|A7'D —vI| =0, (7)

where [ is the identity matrix of dimension 9. The last equation with respect to v has following
solutions:

A+2
V) = —V9g= —Vp = — P M, V23 = —l78 = —Vs= —\/ga V456 = 0, (8)

here v, and v, define velocities of the transverse and longitudinal seismic wave, respectively.
Now we choose a nondegenerate matrix Y(x3,t) so that the equality

TIATIDT = A (9)

is hold, where A is a diagonal matrix, the diagonal of which contains the eigenvalues (for each
fixed z3) (8) of the matrix A~1D that is A = diag (—v, —vs, —s, 0,0, 0, vs, Vs, 1p).
From the formula (9) implies the equality

A7'DY = TA,
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which means that the column with the number ¢ of the matrix T is an eigenvector of the matrix
A7IDTY, corresponding to the eigenvalue \;. Direct calculations show that the matrix T,
satisfying the above conditions, can be chosen as (not uniquely)

0O 0 1 000 ©0 1 0
0O 1 0 000 1 0 0
1 0 0 000 O 0 1
V—Ap 0 0 101 0 0 —Vip
Txz)=| 0 0 0 01 0 0 0 0
0 0 pvs 0 0 O 0 —pUs 0
V—Ap 0 0 001 0 0 —%,
0 pvge 0O 0 O O —pus 0 0
pvp 0 0 000 O 0  —py

We introduce the vector function ¥ by the equality
U="74v.
Making this change in the equation (6) and then multiplying it on the left by Y=*A~! then
we get

t

+ F1> T, t) = /Rl(t —1,23)%(T, 7) dT, (10)
0

0 0 0 0
I—+A—+B
<8t+ 83+ . +C’1a

where
Bl(ﬁﬂg) = T_lA_lBT = (bj) Cl(xg) = T_lA_lCT = (Cij) s

oY

Fi(z3) =147 lDa +TTIATIEY = (pyy)

T3

Ry(z3,t) = Y PATIRY = (7))

3
o™~
o

o

s 0 0 0 0 0 0 :
0 w0 0 0 0 - 0 0
0 0 o0 0 0 0 - 0
/\(rairm) 0 0 ry 0 ryp—ry 0 0 A(Téi;rh) (11)
— 0 0 0 0 #fy 0 0 0 0 .
A(Téigrgs) 0 0 0 0 Té2 0 0 )‘(7"21,3,”;7’52)
0 - 0 0 0 0 o 0
0 0 -d 0 0 0 0 s 0
S0 0 0 0 0 0 0 s

The purpose of this article is to study the direct and inverse problems for the system (11).
Moreover, the direct problem is an initial-boundary value problem for this system in domain
D = {(z1,22,73,t) : (z1,22) € R* 23 € (0,H),t > 0}, H = const, and in the inverse
problem, the elements of the matrix R are assumed to be unknown, which are included in the
definition of the matrix R; (12).

The is organized as follows. Section 1 presents the formulations of the direct and inverse
problems and investigates the direct problem. In Section 2, the inverse problem is reduced
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to solving of an equivalent closed system of integral equations. In Section 3, we present the
formulation and proof of the main result, which consists in the unique global solvability of
the inverse problem. At the end there is a list of literatures used in the article.

1. Statement of the Direct and Inverse Problems
Consider the system of equations (10) in the domain D with a bounded I' = T'o UT'; UTs:
Iy = {(f,t) : (.%'1,.%'2) € RQ, 0<xz3< H, t= 0},

I ={@1t): (x1,22) €R* 23=0,t>0},
Iy ={(@,t): (v1,22) ER® a3 =H, t>0}.

For this system the direct problem we pose as follows: determine the solution of the
system of equations (10) at the following initial and boundary conditions:

Vil = wi@), i=1,....9, (12)

192“333:H = gl-(xl,xg,t), 1= 1,2,3, 192“333:0 = gl-(xl,xg,t), 1= 7, 8,9 (13)

Here ¢;(T), gi(x1,x2,t) are given functions. It is known that [5, 6] the problem (10), (12),
(13) is posed well.

The inverse problem is to determine the nonzero components of the matrix kernel R,
that is r;;(t), 4,5 = 1,2,3 (R is included in R; according to the formula (12)) in (10) if the
following conditions are known:

192| hi(ml,mg,t), i=1,...,6, (14)

x3=0 =

where h;(x1,x9,t), i =1,...,6, are the given functions.

In the inverse problem, the numbers 7;;(0), i, j = 1,2, 3, are also considered to be given.

Currently, the problems of determining kernels from one hyperbolic integro-differential
equations of the second order [7-22| have been widely studied. One- and multidimensional
inverse problems are investigated and unique solvability theorems are obtained. Typically,
second-order equations are derived from systems of first-order partial differential equations
under some additional assumptions.

The inverse problem of determining the convolution kernels of integral terms from a system
of first-order integro-differential equations of general form with two independent variables was
studied in [23]. The theorem of local existence and global uniqueness is obtained. In the work
of [24], the method for studying the work of [23] was applied to the investigating of the
inverse problem of determining the diagonal relaxation matrix from the system of Maxwell’s
integro-differential equations.

It seems completely natural to study inverse problems on the determination of the kernels
of integral terms of a system of integro-differential equations directly in terms of the system
itself. This article is a natural continuation of this circle of problems and to a certain extent
generalizes the results of [23| to the case of a three-dimensional system of viscoelasticity
equations (1), (2).

Let functions ¢(T), ¢i(x1, x2,t) included in the right-hand side of (10) and the data (12),
(13) are compact support in x1, z2 for each fixed z3, t. From the existence for the system (10)
of a compact support domain of dependence and compact support with respect to x1, z9 of
the right-hand side (10) and data (12), (13) implies the compact support in x1, z2 solutions
to the problem (10)—(13).
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Let us study the property of solution to this problem. More precisely, we restrict ourselves
to studying the Fourier transform in the variables x1, x5 of the solution. In what follows, for
convenience, we put r3 = z and introduce the notation

1/9\(771,772,z,t) = /vﬂ(xl,xg,z,t)ei[m””ﬁmm] dx1 dxa,
]R2
where 71, 72 are transformation parameters. We fix 71, 7o and for convenience, we introduce

the notation 19(771,772,,2 t) = 19(2 t).
In terms of the function U we write the equations (10) as

9 L9
(gt + y](f > 0j(z,t) = ;ﬁjk(z)ﬁk(z,t) +/Z'fjk(z,7)v§k(z,t — 7)dr, (15)
= 0

k=1
j=1,...,9,
where pjr, = —imbjx — in2cjk — Pjk-

We will use a similar notations for the Fourier images of functions included in the initial,
boundary and additional conditions (12)—(14):

o~

ﬂi‘t:(} = s/él'(z), 1= 1, e ,9, (16)
Ui,y =(t), i=1,2,3, 0 _ =3Gi(t), i="7,89, (17)
1/9\1‘2:0 :ﬁl(t)a Z: 17...76. (18)

Where @;(z), i = 1,...,9, gi(t), ¢ = 1,2,3,7,8,9, ﬁi(t), i = 1,...,6, are the Fourier
images of the corresponding functions from (12)—(14) for 71 = 0, n2 = 0. We also denote
by Dpg the projection of D onto the plane z,t. In what follows, we will consider the
system of equations (15) in the domain Dy U T under the conditions (16) and (17). Where
To={(zt): 0<z<H t=0,T,={zt):2=0t>0}, [y ={(zt) : 2= H, t >0},
[ = fo U fl U fg.

For the purpose of further research let us introduce the vector function w(z,t) = 9 o (2,1).
To obtain a problem for a function w(z,t) similar to (15)—(18) differentiate the equatlons (15)
and the boundary conditions (17) with respect to the variable ¢, and the condition for ¢ = 0
is found using the equations (15) and the initial conditions (16). In this case, we get

t g
+/§:ag4ﬂ%@¢—7mn j=1,...,9, (19)

05i(2) N~ o~
Wil =~V 4 D _Bi(2)i(2) = @il2), i=1,....9, (20)
j=1
w| i@@)1—123 wi| ‘—i@@)1—789 (21)
z=H dt ’ [ 0 dt )
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For functions w; additional conditions (18) gets

w| hi(t), i=1,...,6. (22)

z=0 E

Let us pass from the equalities (19)-(22) to the integral relations for the components of
the vector ¥ with integration flux along the corresponding characteristics of the equations of
the system (19). Recall that the characteristics corresponding to v, and vg have a positive
slope, and the characteristics corresponding to —v, and —v, have a negative slope. We denote

z

d
’”(Z):/Tﬁﬁ)’ i=1,2,3,7,8,9, pi(z)=0, i=4,5,6.

Inverse functions to ;(z) will be denoted by z = p; (). Using the introduced functions, the
equations of characteristics passing through the points (z,¢) on the plane of variables £, 7 can
be written in the form

T=t+ (&) —pi(z), i=1,...,9. (23)

Consider an arbitrary point (z,t) € Dy on the plane of variables £, 7 and draw through
it the characteristic of the i th of the system (15) equation tell to intersection in the domain
7 < t with boundary I. The intersection point is denoted by (2§, t})). Integrating the equations
of the system (15) along the corresponding characteristics from the point (z§,t5) to the point
(z,t) we find

dr
£=u21 [T —t+pi (2)]

L9
wl('zat) = ZOatO +/Z kak

th k=1

T

9
ka £ 1)0i (€ —i—/ka(f,T—a)wk(&a)da]
0

k=1

(24)
dr,
E=p; Hr—t+pi(2)]

-f

th

i=1,...,9.

We define in (24) ). It depends on the coordinates of the point (z,t). It is not difficult to
see that #{(z,t) has the form

) t— u; (H t 2> — wi(H), .
ti(z,t) = pi(z) + pi(H), pi(z) — pi(H) i=1,23,
0, 0 <t <p(z) — pi(H),
: : t—pi(z), t>pilz), .
£i(2t) =0, i=4,5,6, ti(z1t)= Hi(z), mil2) i=178.9.
0, 0 <t < pi(2),

Then, from the condition that the pair (z§,t}) satisfies the equation (23) it follows

A H, t > pi(2) — wi(H), .
w(zt)=9 4, i ey, =123
i (pi(2) —t), 0<t<pi(z) — pi(H),
. 4 0 t > pi(2), .
G(t) =2, i=4,5,6, z(zxt)=< ", i) i=1,8,9.
pi (piz) =), 0<t<p(z),
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The free terms of the integral equations (24) are defined through the initial and boundary
conditions (20) and (21) as follows:

iz ) = 50 (t = pi(2) + pa(H)) st > pilz) — i H), i_ 193
O; (n; ' (mi(2) — 1)), 0 <t <pi(z) — pi(H),
wilz0:ty) = i(2), i =4,5,6,
H ~
i 41 ot Yi t— 7 ) t = 7 ) .
wilzh, th) =4 o7 (_1 Hil2)) pal2) i=1,8,9.
D (1 (i) = 1)), 0<t<p(2),
Let the following conditions hold
~ ~ 6@ t 82 z 9 .
G =50 wa O, 000 3o ) =123 ()
t=0 z=H j=1
N ~ 9
. N Jg;(t 0p;i(z N .
50 =50 ad Ol _ OB S 00, =180 (20)
t=0 z=0 j=1

It is easy to see that the conditions for matching the initial and boundary data (16), (17)
(20), (21) in corner points of the domain Dy coincide with the relations (25) and (26). Hence
it is clear that at the fulfillment of the same equalities (25) and (26) equations (24) will have
unique continuous solutions w;(z,t), or the same %ﬂi(z, t),1=1,...,9.

Suppose that all given functions included in (24) are continuous functions of their
arguments in Dg. Then this system of equations is a closed system of integral equations
of the Volterra type of the second kind with continuous kernels and free terms. As usual, such
a system has a unique solution in the bounded subdomain Dyr = {(2,t) : 0 < 2 < H, 0 <
t <T}, T > 0 are some fixed number.

Theorem 1. Assume functions ¢(x), g(z1, z2,t) have compact support in 1, x9 for each
fixed z, t. Let be p(z),u(2),A(2),p(z) € CH0,H], g(t) € C1[0,T], p(z) > 0, A(z) > 0
n(z) >0, ri;(t) € C[0,T],4,j = 1,2,3 and conditions (25), (26) are satisfied. Then there is a
unique solution to the problem (19)—(21) in the domain Dyr.

The problem (15)—(17) in the domain Dy is equivalent to a linear integral equation of the
second kind of Volterra type with respect to ¥. As follows from the theory of linear integral
equations, it has a unique solutions [3]. So we drop it.

2. Reduction of the Inverse Problem

In this section, the inverse problem is reduced to solving of an equivalent closed system
of integral equations. Consider an arbitrary point (z,0) € Iy and draw through it the
characteristics (23) for ¢ = 1,2,3, up to the intersection with the boundary of the domain
Dpyr. Integrating the first six components of the equation (19), we obtain

wi(z,0) = — dr

E=p; rtpi(2)]

9
[Z zg w] 57 +ZTZJ §7 ‘10] ]

dr, i=1,...,6, (27)
e=p; rtpi(2)]

_//29:7«2](5, a)w;(€,7 — ) da
0
1

0
where t§ = —pu;(2), i =1,2,3, t{ =t,i =4,5,6.
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For the purpose of further research we introduce the following notation for the unknowns:

Uil(z’t) = wi(z’t)’ i=1,...,9, U%(t) = Tlll(t)’ U%(t) = Tll2(t)’ Ug(t) = TiB(t)’ (28)

0 .
vi(t) = rhe(t),  03(t) = ris(t),  vi(t) =rist), vi(zt) = gy is ), =456, (29)
/

0} 0) = (e t) ~ B0 (5, )y ) 2, =19, (30)
3 7"/ tz ~ i ~ i a i .

U?(Z’t) = %wi(z’t) - 232( 0) (302('20) - @7(20)) %to’ 1= 2, 7a (31)
0 atd) o~ o~ O

U?(Z,t) = awi(z,t) — # ((pg(zo) — <p8(z0)) &tm 1=3,8. (32)

Taking into account these notations and the explicit forms of the functions 7;;(z,t) in terms
of rj;(t) by the formula (11), we rewrite the equations (24) in the form

9 2
~ Vg(\T) , ~ —~
o) =+ [ | S pnen) - 8 )m—@g)(a] i

noLi=1 e=p7 [T =t (2)]

0

/ TU(Qs(OC) 1 1

—// 5 (v] —vg) (&7 — @) da dr, i=1,9, (33)

# 0 E=p; H[r—t+pi(2)]

9 2
~ Vs(T) , ~ —~
At =0+ [ | aseuen -2 )(wz—w)(&)] dr

o L=l =y [T—t+ui(2)]

0

/ TU%(OZ) 1 1

—// 5 (v3 —v7) (§,7 — @) dov dr, i=2,7, (34)

# 0 E=p; " [r—t+pi(2)]

9 2
~ v3(T)  ~ ~
ety =0+ [ | S puewien - 3 @ - @) <§>] ir
i L=l E=p; Hr—t+pi(2)]
[ vi(a) 4 1 :
—// 5 (v3 —vy) (&, 7 — @) dov dr, i=3,8, (35)
¢ 0 E=p; Hr—t+ui(2)]

vi(a)vi(z, 7 — a)dadr

c
Ny
—~
n
=
I
O\H~
(-
=)
&
—~
N
~
S
—~
n
9
~
U
)
+
O\H~
O\\]

/ (v —v}) (@) <i (vi —vg) (2,7 — @) + v§(z, T — a)) dadr
0

Vp

| ~(1-¢ z) + 96 (2 vi(T)Pa(2)| dr
" O/ (07 =) ) (26— 60 () + 5ula) ) + o 00p(a)] . (39
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T t

¢ ¢
(z,1) :/Zjo}] (z,7 dT+// Q)vi(z T—a)dadT—i-/U%(T)(ﬁl(z)dT, (37)
0 0

Jj=1 0

vé(z,t) = // [% (UZ — vg) () (v% — vé) (z,7 —a) + v%(a)vé(z,T — a)] dadr
0 0 (39)

+ [ S+ [ |2 @3- 8) ()@= 80 () + 2| ar
0 0

where v{1(2,t) = w;i(2,t8), i = 1,2,3,7,8,9.
Consider (27) the initial conditions (20), we differentiate (27) with respect to z for
i =1,2,3 and for t for i = 4,5,6. After simple calculations, taking into account (28)—(32), we

pass to integral equations

V() = o2 (t) = 2 M,y / V2 (7) <%ﬁ1 ;i ) (t—7)dr— / v%(T)%m(t —r)dr
0 0

~

_Ml/t [i (v —v}) (1) <dﬁl - %gg) (t—7)— (v5 —vj) (T)Ehﬁ(t—T):| dr

Vp dt
t , 5 ~ R 2 9
M 0/ HOg @ e e / 7 L @en)|_ | dr 09
FAM, O/ O/ e (o - ) € ) - FO G -G @] da| _ ar
_Ml/ [Vip (vi(T) vg( )) (:Zitﬁl (jt >(t—7)—|—v4( )d h6(t—7')} dr
B3(0) = o2(0) = My [ () Ghs(t = ) (10)
0
Ug(t) = UgQ(t) - M4/U3( ) <jt/\3 — %gg) (t — T) dr
2 —v — o T
v 0/ 0/ H@ () €7~ )~ F0 G- P @) dn) | ar (4
/ 0
2
- M3 /UG( )6 (803—808)(5)‘§M2 t_T]dT+2M3/a Zpsa g - T]dT,
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t
A d~ d .
wR(0) = o0) — 2205 [ i) (S - 50 ) (¢ - yar+
0

dr
E=py [t—7]

! 9
0 .
dr+ 2)\M5/& E p1;(&v; (€,
0 j=1

+AM; / / v3(a) [(vF = 13) (&,7 — a) — v (1) (1 — Fo) (6)] da

(42)

dr
E=py Ht—7]

: z g=py t—7]

s [ |20 =) () (e - 1) - Gl = 1)) + () el - )|
0

dr (43)
E=py H[t—7]

+M6O/O/U§(a) [(v3 —v7) &1 —a) _U5( ) (B2 — &7) (5)] do

dr,
E=py ' [t—7]

! 9
d~ d . 0 N
—M7/U§(T) (%hQ - EQ?) (t—T)dT+2M6/£Zp2j(§)U}(§aT)
0 0 =1
¢

wB0) = o0 + Ms [0 01— 2 ) dr

0 E=py  [t—7]

iy / / 03(0) [(1F — v) (6,7 — &) — v () (B1 — Bo) (£)] da dr ()

g=py t—7]

d ~ d
—MQ/UG(T) <ah1 dt99> (t - 7—) dr + 2M8/ aZ Zplj (557—)
0

where

dr,
g=py Ht—7]

V(1) = MiQi(t), vy (t) = MaQs(t), vg?(t) = —2M3Ps(t),
VPP (t) = MsQi(t), va (t) = —2MgPy(t), v§°(t) = —2MsPi(¢),

2 ~ 9 & 2

P(t) = Sz u(t)) = 52

w]()t

and

9 9
Q1= Z5halt) - > D(0)w; (0,) — < - Z 0)w; (0,1) 2M8P1(z)>,

& ~ .
Q% = Ehfi(t) - Zpt')j(o)wj(o’t), Q4 dt2 Z w] 0 t 2M8P1(Z)’
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1 V. )
M2 = = ) Ml - ~ PN P PN PN 5 M3 - =X = A
@5(0) A(@1(0) = @9(0)) + vp$6(0) + vp$a(0) $3(0) — @5(0)
M, 1 M, V2 M. Vp
4 — =< ~ 9 6 — =< A~ ) 5 — A~ ~ ~ bl
$3(0) — P5(0) $2(0) — &7(0) A ($1(0) = $9(0)) + v,P6(0)
1 1Z1 1
M7 = = A~ ) M8 - o~ ~ bl Mg - o~ o~
$2(0) — &7(0) $1(0) — P9(0) $1(0) — $9(0)
The equation (39)—(44) contains unknown functions %, j=1,...,9. For them we will

receive integral equations from (24) by differentiating them with respect to the variable z.
Using the notation (28)—(32), we obtain the integral equations for them

3 03 [0 ~ 1 ()
et = o0 + [ Yo Ba@len - 22 Gi-g0) (9 ar
i j=1 E=p; Hr—t+pi(2)]
t
9 . o
+ &té/ (v —vg) (26, th — T)dr (45)
0
t T
2
—//UG;OZ)%(’U%—Ué)(g,T—Oé)dOz dr, =19,
t 0 =y r—t+pi(2)]
3 03 t 0 |~ 1 vi(r)
Vi (2,t) = v;°(2,t) + /@ > B T) - 5 (P2—o7) (§) dr
Vi =1 =y [r—ttpi(2)]
0
to
9 . o
+ &té/ (vy —v7) (2h,th — T)dr (46)
0
t T
2
—//USQT)%(U%—U%) (&7 —a)da dr, 1=2,7,
t 0 E=p; T —tpi(2)]
¢
3 03 0 [< =~ 1 U%(T) ~ o~
U, (Z7t) = (Z,t)+ & Zpij(g)vj (577)_/81' 2 (903_()08) (5) dr
i i=1 E=p; IT—ttp(2)]
t
9 o
+ a—té/ (vi — vg) (26t — T)dr (47)
0
t T
3
—//Ug(a)g(vé—vé)(gﬁ— ) da dr, i=23,8,
2 0z S
5 E=p;  [T—ttpi(2)]
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t 9 t T
vy(z,t) = /Z% [ﬁ4j(z)v]1(z,7)] dT—F//’U%(Oé)%’Ui(Z,T—O&) doodt
o J=1 0 0
+// (vi(a) — vi(@)) % [% (vi —vg) (2,7 — @) + v§(z, 7 — a)] dodr
0 0

+ [ 02 =8 O3 |2 @10 - @l + okrgea)| dn 60
0
where
03 PRI IRE R S i 4 ,
v (z,t) = &wi(zo,to) — &to [Z Z-j(zo)wj(zo,to)] , 1=1,2,3,7,8,9.
=1
A@1(0) = P9(0)] + vp@6(0) + 1p$4(0) #0,  P5(0) #0,  @3(0) — s(0) # 0, (51)

A@1(0) = @o(0)] +1%6(0) # 0, $2(0) = @7(0) # 0, 1(0) = o(0) # 0. (52)

We require the fulfillment of the matching conditions

00i(z)
0z

9
+) " Pi(0)85(0) = —hi| , i=1,...,6. (53)
0 j=1

z=

3. Main Result

The main result of this work is the following theorem:

Theorem 2. Let the conditions of Theorem 1 are satisfied, besides function h(xy;xa;t)
have compact support in x1, xa for each fixed t, $;(z) € C%[0,H], i = 1,...,9, g:(t) €
C2[0, H],i=1,2,3,7,8,9, hi(t) € C2[0,H],i=1,...,6, equalities (51), (52) and matching
conditions (25), (26), (53) hold. Then for any H > 0 on the segment [0, H] there is a unique
solution to the inverse problems (15)—(18) from class 1;;(t) € C'[0, H], i,j = 1,2,3.
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< Equations (33)—(50) supplemented by the initial and boundary conditions from
the equalities (19) forms a closed system of equations for the unknowns w;(z,t),
i=1,...,9, r ( ), ij = 1,2,3, %wi(z,t), i = 1,...,9. Consider now a square Dy :=
{((): 0< 2 < H,0<t<H}.

Then, these equatlons show that the values of the functions w;(z,t), i =1,...,9, rgj(t),
i,j = 1,2,3, %wi(z,t), i=1,...,9 at (z,t) € Dy are expressed through integrals of some
combinations of the same functions over segments lying in Dy.

The system of equations (33)—(50) we rewrite in the operator form

v = Av, (54)

where the operator A = (A},A?,Ag’), 1 =1
right-hand sides follow equations (33)—(50).

Let Cs(Dy), (s = 0) be the Banach space of continuous functions induced by the family
at weighted norms ||-||,,

;o097 = 1,...,6, in accordance with the

1 —st —st 3 —st
= . t S t
[vlls max{&lﬁé(zi;le%)o{vl (z,t)e™*", 1H<1?<X6tes[lolp [vF (t)e™™| g%)(z;lepl)o{v 3(2,t) {}

Obviously, Cs with s = 0 is the usual space of continuous functions with the ordinary
norm, denoted by [|-|| in what follows. Because e ||v|| < ||v||s < ||v||, the norms |jv]|s and
|lv|| are equivalent for any H € (0,00). We choose that number s later.

Next, consider the set of functions S(v°,7) C Cy(Dy), satisfying the inequality
0

I

HU—U <, (55)

S

where 7 is a known number, the vector function
O(z,t) = (W (z,t), i=1,...,9, v?(t), i=1,...,6, v(z,1), i=1,...,9),

defined by the free terms of the operator equation (54). It is easy to see that for v € S(v°,r)
the estimate [|v||s < ||[v0)|s + 7 < ||0°|| + r := ro. Thus, rg is a known number.
Let us introduce the following notation:

~

hi } )
C2[0,H]

co:= mox {1} 0= _mas {lGleram} hoe= mos ]

MP:{I’}?%{HMAZ')HC[QH]}’ MQO_”max {pr )HC[O,H]}’

A(z)

M3 =
3 @-:J?,%f’%,s,g{ vp(2)

Note that the operator A maps the space Cs(Dy) into itself. Let us show that for a suitable
choice of s (recall that H > 0 — is an arbitrary fixed number) it is on the set S(v°,7) a
contraction operator. First, let us make sure that the operator A takes the set S(v%,r) into
itself, that is, it follows from the condition v(z,t) € S(v°,r) that Av € S(v°,7), if s satisfies

)

clo,H)

ot
Hcl[OH]’ ” 1”001{}7MozmaX{MP7M§7M??}-
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some constraints. In fact, for any (z,t) € Dy and v € S(v°,r) the following inequalities hold:

fato ot = sup |(4lv—oft) e
® (2)eDo

vg(T)e™*"

— 5 (G1—%) (5)] e s dr

e=py [t i (2)]

2 —sa
+ /e_s(t_T) / 71)6(06)6 (vl — vg) &1 — oz)e_s(T_O‘) do dr

0 E=p;  [t—T+ni(2)]

t
11

< (Mol + ollol + ol llol.) [ etdr < (900 + o + 7o) 1= v
t
Using similar calculations for the remaining equations. Finally, we get

1 7
uAv—vOuSg—max{max fry}. max {1}, max {fygj}} N}
S 7j=1 7j=1,.. 7j=1,.. S

) 7 ’ 7 ’ 7

where

T = 9M0 + o + 7o, ] = 2737 778797 Y14 ‘= 13M0 + 4M0740 + 3700@0 + 3()007

Y15 1= IM° + 9o + 10, Y16 := IM + 9IM 1o + 4M g + 0,
o1 = 2r0 + 2000 + 5 (M) (go + ho) + 4ho + 9 (M°)® | 55 := MOy,
a1 = (M®)? (3o + 3ho + 200 + 18), 72 := 2M° (ro(1 + o) + 0 + ho +9), j = 3,5,6,
v3j = 1IM° + o+ 10, §=1,2,3,7,8,9, 734 := 13M" + 4Mrq + 30 (ro + 1),
35 1= IM® + 70+ 00, Y36 := IM° +9IM rg + o (4M° + 1),

Choosing s > (1/r)7°, we get that the operator A maps the set S (v%,r) into itself.
Now, let v and ¥ be two arbitrary elements in S(v°, ). Using the obvious inequality

‘v vl — okl {e st < ‘v —kavl‘e 4 {kav ~He_5t < 2rollv =05, (2,t) € Dy,

after some easy estimations, we find that for (z,t) € Dy,

[v

_ ~ —-v 1 _
HA%’U - A%UHS = sup |(A1v — A1) e < TUHS [9M° + g + 4ro] = pals! v =2,

(Z7t)€DO

and hence we have

- v —0 1 ~
40— ol = = m{ ), x| = 9 I - 91,

) 7 ) 7 ) 7

where

Yaj = IMO + oo+ 4r, j=2,3,7,8,9, ~as:=13M° +4M°r¢ + 12ro0 + 3¢0,

Yas = IMO + o + 4drg,  ya6 1= IM° + 9IMOr + 4M g + 4o,
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V51 := 21 + 4poro + 10 (M0)2 (90 + ho) + 10k + 9 (M0)3 . 52 1= MPhy,
51 = (M©)? (1290 + 3ho + 1009 + 18), 755 := MO (ro(1 + o) + o + 4ho +9), j =3,5,6,
Yo = 1IMO + g + 19, j=1,2,3,7,8,9, 764 := 13M° +4M rg + 3o (ro + 1),
Vo5 := IM® + 79 + 0o, 66 : = IM° + 9IMOro + 0o (4M° + 1).

Choosing now s > !, we get, that the operator A compresses the distance between the
elements v, v to S (’UO,’I“) .

As follows from the performed estimates, if the number s is chosen from conditions
5 > s* := max{7?,7'}, then the operator A is contracting on S (’UO, 7“) . In this case, according
to the principle Banach the equation [25, pp. 87-97] (54) has the only solution in S (UO,T)
for any fixed H > 0. Theorem 2 is proved. >

By the found functions rj;(t), i,j = 1,2,3, the functions r;(t), i,7 = 1,2,3, are found by

the formulas .
’I“ij(t):Tij(O)—i—/T’éj(T)dT, 1,7 =1,2,3.
0

Note that by the functions 7;(t), i,j = 1,2,3, the functions K;(t), 4,j = 1,2, 3, are defined
as solutions of integral equations (4).
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OBPATHAS 3AJJAYA JIJI51 BA3KOYIIPYTOIl CUCTEMBEI
B BEPTUKAJIbHO-CJIOUCTON CPEJE

Boaraes A. A.M2) Typaues . K.13

! Byxapckoe oresnenne nactuTyTa Maremarnkn AH PVs,
V3b6ekucran, 200117, Byxapa, yia. M. Uk6omaa, 11;
2 Ceepo-Kaskascknii rienTp MaTeMaTndeckux uccienopannii BHI] PAH,
Poccus, 363110, c. Muxaiinosckoe, yiu. Bunbamca, 1;
8 Byxapckuit rocyziapcTBeHHbBI YHUBEPCUTET,
Vsb6ekncran, 200117, Byxapa, ysi. M. NUk6oua, 11
E-mail: asliddinboltayev@mail.ru, d.durdiev@mathinst.uz, durdimurod@inbox.ru

Awnnoranusi. B gannoit pabore paccMaTpuBaeTCs TpeXMepHasi CUCTeMa YPAaBHEHUI BA3KOYIIPYTOCTH II€P-
BOI'O [IOPsIJIKA, HAIMCAHHAsI OTHOCUTEIBLHO II€PEMEIeHNe U TEH30pa HAIIPSIPKEHUsI. DTa CUCTEMa COJEPIKUAT
CBEPTOYHBbIE MHTETPAJIBI S/IEp PEJIAKCAIINN C PeIeHneM npsaMoil 3agaqn. [Ipsavas 3amada ecTb HAYATBHO-
KpaeBas 3aJia4a JUlsl JIaHHON cucTeMbl nHTerponddepeHnnaIbHbIX ypaBHenuii. B obpaTHoit 3aade Tpe-
OyeTcst OIIPEJIESINTD s1/Ipa PEJIAKCAIlUH 110 3a[aHHBIM JJIsl HEKOTOPBIX KoMuoHeHT Pypbe npeobpa3oBaHust
10 TIEPEMEHHBIM X1 U T2 PEIEeHUs TPSIMOii 33/1a91 Ha GOKOBBIX IPAHMIAX paccMaTpuBaeMoit obnactu. B Ha-
JaJjle METO/I0M CBeJIeHUs K NHTerPaJIbHbIM YPABHEHHUSAM U ITOCJIEIYIOIUM IIPUMEHEHUEM MeTO/1a I10C/Ie[0Ba-
TEJIbHBIX MPUOJIMKEHNI N3YdaloTCs CBONCTBA PEIeHns IPsiMoii 3aaan. {iist obecrievdeHus HelrpepbIBHOTO
pellleHusd IOJIy4YeHbl yCJIOBUA IVIQIKOCTH U COIVIACOBAHWUS HAYAJIBHBIX U I'DAHUYHBIX JJAHHBIX B YIVIOBBIX
Toukax obsiacru. Yrobbl pemunTh 06paTHYIO 3a/ady METOJLOM XapaKTePUCTHUK OHA CBOIUTCS K 9KBUBAJICHT-
HOI 3aMKHYTOH CHCTeMe MHTEerpajbHBIX ypaBHEHUI BOJILTEPPOBCKOIO THUIIA BTOPOI'O POJia OTHOCUTEIBHO
npeobpazoBanus Pypbe MO MEPBLIM JBYM IPOCTPAHCTBEHHBIM IIEPEMEHHBIM X1, T2, JJIs PEIIEHUS TPSIMOMA
3a/1a9M ¥ HEM3BECTHBIX 0OpaTHOil 3aja4u. lasiee K 9T0oi cucremMe, HAIMCAHHON B BHJIE OIIEPATOPHOIO yPaB-
HEHUsl IPUMEHSIETCSI METO/T C2KMMAIOIIIX OTOOPaXKeHUH B IIPOCTPAHCTBE HEIIPEPBHIBHBIX (DYHKITHUI C BECOBOIA
9KCIIOHEHITHAJILHOM HOPMOIt. [loKaspiBaeTcs1, YTO P MOAXOMASAIIEM BBIOOPE ITapaMeTpa B ITOKA3aTeNe SKC-
IIOHEHTHI, 9TOT OIIePATOP SBJISIOTCS C2KUMAIOIIIM B HEKOTOPOM IIIape, KOTOPBIil sIBJISeTCs II0JIMHOXKECTBOM
KJlacca HellpephIBHBIX GyHKImi. Takum o6pa3om, JoKa3bIBaeTCs Ii100aabHasl TeopeMa CyIECTBOBAHUS U
€JUHCTBEHHOCTHU PeIlleHNs ITOCTaBJIEHHON 33/ a49H.
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