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Abstract. In this article the problems of the unique classical solvability and the construction of the
solution of a nonlinear boundary value problem for a fifth order partial integro-differential equations with
degenerate kernel are studied. Dirichlet boundary conditions are specified with respect to the spatial
variable. So, the Fourier series method, based on the separation of variables is used. A countable system
of the second order ordinary integro-differential equations with degenerate kernel is obtained. The method
of degenerate kernel is applied to this countable system of ordinary integro-differential equations. A system
of countable systems of algebraic equations is derived. Then the countable system of nonlinear Fredholm
integral equations is obtained. Iteration process of solving this integral equation is constructed. Sufficient
coefficient conditions of the unique solvability of the countable system of nonlinear integral equations are
established for the regular values of parameter. In proof of unique solvability of the obtained countable
system of nonlinear integral equations the method of successive approximations in combination with
the contraction mapping method is used. In the proof of the convergence of Fourier series the Cauchy—
Schwarz and Bessel inequalities are applied. The smoothness of solution of the boundary value problem
is also proved.
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1. Formulation of the Problem

The theory of boundary value problems is currently one of the most important directions

of the theory of higher order partial differential equations and nonlinear mathematical physics.
So, a large number of research works are devoted to the study these theories of higher order
partial differential equations and nonlinear mathematical physics (see, in particular [1-11]).
Studies of the many problems of gas dynamics, theory of elasticity, theory of plates and shells
are described by the aid of the high-order partial differential equations. Partial differential
equations of Boussinesq and Benney-Luke types have differential applications in different
branches of sciences (see, for example, [12-14]). When the boundary of the flow domain
of a physical process is unavailable for measurements, nonlocal (often nonlinear) conditions
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in integral form can serve as an information sufficient for the unique solvability of the prob-
lem [15]. Therefore, in recent years, research on the study of nonlocal boundary value problems
for differential and integro-differential equations with integral conditions has been intensified
(see, for example, [16-30]).

In this paper, we study the regular solvability of a fifth order partial integro-differential
equations with some nonlinear integral conditions and parameter. This paper is further
development of the works [31, 32].

In the domain Q@ = {0 < t < T,0 < x < [} the following form of the partial integro-
differential equations is considered

T T

Upi(t,x) + wi(t) Upp g o (t, @) — wolt /wam 0, x) G:V/K(t,s) Utzzraz(s,x)ds, (1)
0 0

where T and [ are given positive real numbers, v is a real non-zero parameter 0 < w;(t) €
Cl0;T],i=1,2,0# K(t,s) = Zle a;(t) bi(s), ai(t),bi(s) € C'[0;T]. It is supposed that the
system of functions a;(t), ¢ = 1,...,k, and the system of functions b;(s), i = 1,...,k, are
linear independent.

PROBLEM: Find in the domain €2 a function from the class

U(t,z) € C(Q) N O (Q) N CEAQ) N LT Q), (2)

satisfying the integro-differential equation (1) and the following boundary conditions

l

U0,z) =¢ x,//Rl(H,z,U(G,z))dﬂdz , 0<a <, (3)
0 0
T 1

U(T, ﬂ:,//RQHzUHz))deZ , 0<z<l, (4)
0 0

U(t,0) =U(t,1) = Uga(t,0) = Usa(t, 1) =0, (5)

where (z,-), ¢(z,-) are enough smooth functions in the domain €; x (—o0;00),
0< fOT f0l|Ri(9,z,U(9,z))| dfdz < oo, i = 1,2, Cy77(Q) is the class of functions U(t,z),

possessing the continuous derivatives %Tg, g%{ in the domain Q, C/7%(Q) is the class of
+sy

functions U(t,x), possessing the continuous derivatives % in the domain €, r, s are
arbitrary natural numbers, Q = {0 <t < 7T, 0 <z < I}

2. Expansion of the Solution of the Problem into Fourier Series

Taking into account the Dirichlet conditions (5) the nontrivial solutions of the prob-
lem (1)—(5) are sought as a following sine Fourier series

= Zun(t) Un(z), (6)
n=1

where

un(t) = /U(t,x) U (x) dz, (7)

Q
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2
Un(x) = \/;sin WTnx, =100, n=1,2,...

We also suppose that the following functions can be expanded into Fourier series

= Z@n() Un(z), P(z,-) = Zﬂ)n()ﬁn(:c), (8)
n=1 n=1

where

T 1
apn(-):/ap x,//Rl(é?,z,U(H,z))dez U () dz,
0 00 ()
T

1 l
:O/¢ x,O/O/Rg(H,z,U(H,z))dez 9 () da.

Substituting Fourier series (6) into partial integro-differential equation (1), we obtain the
countable system of ordinary integro-differential equations of second order

T T
ull (t) — N2 (t) /un(é?) do = v \2(t) /Z a;(t) bi(s) ul,(s)ds, (10)
0 0o =1
where \2(t) = %, pn = 7. By the aid of the designations

T
Tim = /bi(s) ul, (s)ds (11)
0

the countable system (10) cab be rewritten as

k

T
ull (t) = v X2 () Za Tim + A2 (t /un (12)
0

i=1

The second order countable system of integro-differential equations (12) is solved by the
variation method of arbitrary constants

un(t) = Al,n t+ Agm + nn(t), (13)

where we are used the following denotations

k T
0= 0> Tihin(t) + () / un (0) d
=1 0

t t

hin(t) = /(t —$)Mn(s)ai(s)ds, i=1,....k, 0p(t) = /(t —5) An(s) ds.
0 0
By virtue of Fourier coefficients (7) and (9), the conditions (3) and (4) take the forms

unp(0) = /U(O,x) () de = /gp(m,-)ﬂn(az) dr = pn(+), (14)

) Q
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un (T) = /Ut(T,x) Up(z)dx = /1/)(:6, ) U (z) dr = ¥, (-). (15)
Q 9

To find the unknown Fourier coefficients A; , and Ay, in (13), we use the boundary value
conditions (14) and (15). Applying (14) to the representation (13), we find

Asp = on(:). (16)

After differentiation (13) once, by the aid of the condition (15) we have

k T
W) = Avp+ 0> T B (1) + 80 (1) / un (60) 6, (17)

i=1
where

i n(t) = /)\n(s) a;(s)ds, &, (t) = /)\n(s) ds.
0 0

By virtue of the condition (15), from (17) we obtain

T
i = 0n() = S mon e (T) = B(T) [ oy as (18)
i=1 0
Substituting determined Fourier coefficients (16) and (18) into presentation (13), we find
& T
nlt) = on )+ 60 ()t + 0D i Min®)+ Na(0) [ 0a(0) (19)
i=1 0

where

Mim(t) - hi,n(t) —t- h;,n(T)a Nn(t) = 5n(t) —t- 5;,n(T)7

t t
hin(t) = /(t —$)Mn(s)ai(s)ds, i=1,...,k, 0,(t) = /(t —8) An(s)ds
0 0
After differentiation (19) once, we have
A T
(1) = u() + 1S T ML (8) + NA() / un () b, (20)
=1 0

where

i () = /)\n(s) a;(s)ds, 6 (t) = /)\n(s) ds.
0 0

Substituting derivative (20) into designation (11), we obtain the system of algebraic equations

(SAE)
T

k
Tin +V Z Ti,nHi,j,n = T;Z)n() (I)Liﬁ + @271'7” / un(ﬂ) de, i=1,...,k, (21)
Jj=1 0
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where

T T T
Hi,j,n = / bZ(S) M]/m(s) dS, ‘1)1,2‘,” = /bz(s) dS, @271'7” = /bZ(S) N;L(S) ds.
=T 0 0

We recall that the systems of functions a;(t), i = 1,...,k, and b;(s), i = 1,...,k are
independent. So, here follows that H; ;, # 0. The SAE (21) is unique solvable for all bounded
right-hand side of SAE, if the following Fredholm condition is fulfilled

1+vHyq vHio vHy
A(I/): v Hyq 1+vHyy ... v Hyyp £ 0. (22)
v Hiq v Ho ... 1+vHg;:

The values of the parameter v, at which the condition (22) is satisfied are called regular. On
the set of regular values of the parameter v, the solutions of the SAE (21) can be written as

T
%Al AG) AQ’ / un (0 (23)
0
where
1+vHyy ... vHigoy Pmi vHigey - vHyg
Ama(v) = vHyy ... vHyu 1) Pm2 vHygi vHyyg ’
vHq I/Hk(i_l) L2 VHk(i+1) ... 1+vH:

t=1,...,k,m=1,2.
Substituting solutions (23) into representation (19), we obtain the solution of the countable
system of integral equations (CSIE)

T
un(t) = ‘Pn() + %() Vn(t) + Wn(t)/un(‘g) do
0

Hence, taking into account (9), the CSIE we rewrite as

T 1 00
un(t) = I(t;uy) = go x,//Rl 9 ) 2, Zum(H) ﬁm(z)> dodz | Vn(z)dx
0 0

m=1
l T 1 00 T (24)
+Vn(t)/1p gc,//R2 (9,Z,Zum(9)§m(z)> dodz | 9,(z) dm+Wn(t)/un(9)d9,
0 00 m=1 0
where
k (v .
Valt) =1+ 3 T M0, W) = N + 3 ) Mot

©n(+) and 1, (+) are Fourier coefficients in series (8) and are determined from (9), respectively.
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Now, to obtain an expansion of the formal solution to the problem (1)-(5), the
representation (24) we substitute into the Fourier series (6)

00 T
= 3 0(e) )+ ) V() + o ) [ unlo (25)
0

3. One Value Solvability CSIE (24)

We consider the concepts of the following well-known Banach spaces: the space By(T') of

sequences of continuous functions {u;(t)};2; on the segment [0;7] with norm

00 2
1) iy = | 3 (g [01) < o

i=1

the Hilbert coordinate space £ of number sequences {¢;};-; with norm

I lle, =

the space Ly (€;) of square-summable functions on the domain €; = [0;{] with norm

l
19@) oy = | [ 196)Fd < e,
0

Assume that for the smooth functions V,,(t), W, (¢) from (24) we obtain that the following
conditions are fulfilled:

Cy = max { max |V, (¢)]; max |[Vi(t)];
n te[0; T te[0; 77

where
an:max{max | Wa(t)]; max |W/)(t)|; max |W)/( )‘}
te[0; T te[0; T te[0; T

Conditions of smoothness. Let the functions ¢(z),9(x) € C*(€) in the given
domain €2; have piecewise continuous derivatives up to the fifth order and

Conditions similar to (28) also hold for the function ¢ (z):

T;Z)(O") = ¢(l’ ) = T/sz(l“,) = T;Z)mm(x’ ) T;Z)mm:m:( ) ¢:m:mm( ) = 0.
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Then, after integration the integrals (9):

by parts five times over the variable x, we derived

AN D e 0)
where
85 )" 85 )"
A0 = [ F2 D g@an, 90 = [T 0w d (30)
Q; )
Then for the functions in (30) the Bessel inequalities are valid
[0 ()]% < 2 Mr
> [+00) <lﬂ/[ 2@ (31)
e 2 ([P )]
S [pro] <] [ 7] e )
n= o

Then we prove the unique solvability of a countable system of nonlinear Fredholm integral
equations (24). We define the iterative Picard process for countable system (24) as follows

(33)

Theorem 1. Let conditions (22), (26), (27), smoothness be fulfilled. If the following
conditions be fulfilled:

1) [z, p1) — @z, p2) | < Pi(z) [p1 — p2l;

2) |Y(x,p1) — Y(x,p2) | < Pa(z) |p1 — pal;

3) | Ri(t,@,p1) — Ri(t, 2, p2) | < Qi(t,2) [p1 —pa, i = 1,2

1) p= Y2 IP@)l Ly Jo 1Qi(02) ] 1y 0+ T [ICally, < 1.

Then the countable system of nonlinear integral equations (24) is uniquely solvable in the
segment [0; T|. The solution of the countable system of nonlinear integral equations (24) can
be find by the Picard iteration process (33).

< Taking into account the formulas (26), (27), (29), (32) and applying the Cauchy—Schwarz
and Bessel inequalities for the first approximation, from the iteration (33) we obtain the
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estimate
;té?é"%] il <3101+ 3 ma (1)
Z"Pn ‘+Clz’¢n \\Z >()‘+Clz:5 ¢§;’>>(.)‘
n=1 n=1
] (34)
12
< dr| < oo

Taking into account (27) and applying the Cauchy—Schwarz inequality for an arbitrary
difference of the approximation (33), we obtain the estimate

n=1
2 oo l T 1 o
<Y | [ R@it@de [ Q.2 Y [ @) - ik 0)] on(e) a0
i=1 n=1 0 0 0 m=1
0 T
k— k—
+3 e W0 0/ [kt 6) — b2 (0) [
2 T e’}
< IR @iy | [ [ @62 3 [ub(6) = s 0)] () dt (35)
i=1 0 0 m=1
T [oe)
+/Zc2n ub =L (t) —u’:;Q(t)‘ dt
0 n=1
2
< ST IP@) 1y / 1Q:(6.2) 0 ||k () — @), 0
=1 0
FTColly, [t ) =t 0|, <olut -t |, L k=28

According to the last condition of the theorem, it follows from (35) that the operator on the
right-hand side of (24) is contracting. It follows from (34) and (35) that there is a unique
fixed point u(t) € Bo(T) on the segment [0;7]. This implies the unique solvability of the
countable system of integral equations (24) on the interval [0;7T]. Consequently, the iterative
Picard process (33) converges absolutely and uniformly to the function u(t) € By(T), if the
conditions of the theorem are fulfilled. The Theorem 1 is proved. >
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4. Convergence of Fourier Series

Theorem 2. Let the conditions of the theorem 1 are fulfilled. Then the boundary value
problem (1)—(5) is uniquely solvable in the domain Q. The solution is determined by the se-
ries (25). The function (25) is differentiable with respect to all variables, i. e. the derivatives
of the solution (25) included in equation (1) exist and are continuous.

< If these conditions of the theorem are fulfilled, then we have

o T
Z )+ Un () Valt) + Wal(t) [ un(6
= 0f o

2 & 2 — 2 [¢
< \@;mm | +cl\g > )l + \@ O/ZC )]

85 (p(.%',) 85 1/1(957)
0xd 0z

2
< U 12 Ul )iy < .
3
where 7 = (3)} /T2, .
The function (25) is formally differentiated the required number of times with respect to
the required arguments

l

La() La(Su)

o0

T
Upi(t, ) Zvﬂn on(:) +Un () Vi () +W,’[(t)/un(6) dé| , (36)
0

o T
Umm:m:(t,x) - Z <¥)4"9n(x) Qpn() + ¢n() Vn(t) + Wn(t) /un(e) do ; (37)

n=1

0
oo T

Uttzzzs (t,x) = Z <7Tl—">4q9n(x) on () + V() V(1) +W,’[(t)/un(9) do| . (38)
n=1 0

For the function (25), it is easy to verify that the continuity of all derivatives entering
into equation (1). The proof of the convergence of functions (36) exactly coincides with the
proof of the convergence of function (25). For the function (37) we present a proof of the
convergence

27 27 271t [,
l l4 Zn |Q0n| +Ch l l4 Zn |¢n| + l l4 Zn 02n|un(t)| dt
n=1
L2(Ql)]

The convergence of the function (38) is proved in exactly the same way as above.

65 SD(:C’ )
0 zd

65 ¢($, )
0ab

v

L2(€y)

(n* C2n)2 ||U(t)HBQ(T) < 0.
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Consequently, in the domain € the function U(t,x), defined by series (25), satisfies the
conditions (2) of the problem (1)—(5) for all possible n. The Theorem 2 is proved. >
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Awnnoranusi. B crarbe uccieayorcss BOMPOCh OTHO3HAYHON KJIACCHYIECKON Pa3PEeIMMOCTH U TOCTPOEHHU ST
pellleHusi HeJIMHEWHONW KpaeBo# 3ajadm Jjis WHTErpo-audepeHIuaIpHOr0 yPaBHEHUsT B YaCTHBIX IMTPOU3-
BOJHBIX IISITOTO TOPS/IKA C BBIPOXKIEHHBIM sapoM. Jljs 9Toil 3a7aun 3a7anbl TpaHndHbIe ycjioBus upuxie



On a Nonlocal Boundary Value Problem for an Integro-Differential Equations 141

10 PO CTPAHCTBEHHO IepeMeHHON. Tak, ucnonab3yercss MeTor psjgoB Pypbe, OCHOBaAHHBIN Ha pa3/ieeHue
nepemeHHbIX. [losryduena cuernasi cucreMa OOBIKHOBEHHBIX HMHTErPO-AuddEpPEeHINAIbHBIX YPABHEHHH BTOPO-
r'o HOPsiJIKa C BBIPOXKIEHHBIM sipoM. K 9Toil cueTHO# crcreMe OOBIKHOBEHHBIX MHTErpPO-1uddepeHnmaabHbIX
YDaBHEHUII IPUMEHSIETCS METOJT BBIPOXKJEHHOIO $1/Ipa. BBIBOAUTCS CHCTEMa CUYETHBIX CHCTEM AJre0pamdecKux
ypasHenwii. /lasiee, nosryyena caernast cucTeMa HeJIMHEHHBIX HHTerpabHbIX ypasHenuii @pearosnbma. [locrpo-
€H MTEPAIMOHHBII IIPOIECC PEIeHUs] ITOI0 MHTErPAIbHOINO YPABHEHUsI. YCTaHOBJIEHDI JOCTATOYHbIE K0P dU-
[IME€HTHDbIE YCJIOBUS OHO3HAYHON Pa3PEeNINMOCTH CUETHOW CHUCTEMBl HEJUHEHHBIX MHTErPAIbHBIX ypPaBHEHUN
[IPU PEryJIsipHBIX 3HAYEHUAX mapamMerpa. Jljis Joka3aTesbCcTBa OJHO3HATHON Pa3PEIMMOCTH [I0JIy Y€HHON CueT-
HOIi CHCTEeMbl HeJIMHEHHBIX MHTEIPAJIbHBIX YPaBHEHUI UCIIOIb3yeTCs METO/L IOCEe0BATEIbHBIX IPUOJINKEHUIA
B COYETAaHUU €ro C MEeTOJIOM CXKUMaroIiero orobpaxkenus. [Ipn nokazarenscrse cxomumocTu psijioB Pypbe nc-
nonb3ytorcs HepaBeHcTBa Komu — I1IBapna u Beccens. Jloka3zaHa riaIkocTh penieHnsl KpaeBOU 3a1a4H.

KuroueBble ciioBa: HejlMHelHasi KpaeBas 3aJia9a, HHTerpo-auddepennuaibHoe ypaBHEHUE, BIPOXK I€H-
Hoe s171po, psig Pypbe, Kiaccuieckasi pa3penuMOoCTb.
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