УДК 519.17 DOI 10.46698/у5199-5569-8011-v

О Q-ПОЛИНОМИАЛЬНЫХ ГРАФАХ ШИЛЛА С $b=6^{\#}$

А. А. Махнев¹, Чжиган Ван²

 ¹ Институт математики и механики им. Н. Н. Красовского, Россия, 620990, Екатеринбург, ул. С. Ковалевской, 16;
 ² Школа науки, Хайнаньский университет, Китай, 570228, Хайкоу, Хайнань E-mail: makhnev@imm.uran.ru, wzhigang@hainanu.edu.cn

Аннотация. Графом Шилла называется дистанционно регулярный граф Γ диаметра 3, имеющий второе собственное значение θ_1 , равное $a=a_3$. В этом случае a делит k и полагают $b=b(\Gamma)=k/a$. Далее, $a_1=a-b$ и Γ имеет массив пересечений $\{ab,(a+1)(b-1),b_2;1,c_2,a(b-1)\}$. И. Н. Белоусов и А. А. Махнев нашли допустимые массивы пересечений Q-полиномиальных графов Шилла с b=6: $\{42t,5(7t+1),3(t+3);1,3(t+3),35t\}$, где $t\in\{7,12,17,27,57\}$, $\{312,265,48;1,24,260\}$, $\{372,315,75;1,15,310\}$, $\{624,525,80;1,40,520\}$, $\{744,625,125;1,25,620\}$, $\{930,780,150;1,30,775\}$, $\{1794,1500,200;1,100,1495\}$ или $\{5694,4750,600;1,300,4745\}$. В работе доказано, что графы с массивами пересечений $\{372,315,75;1,15,310\}$, $\{744,625,125;1,25,620\}$ и $\{1794,1500,200;1,100,1495\}$ не существуют.

Ключевые слова: дистанционно регулярный граф, Q-полиномиальный граф, тройные числа пересечений.

AMS Subject Classification: 20B05.

Образец цитирования: *Махнев А. А.*, Чжиган Ван. О Q-полиномиальных графах Шилла с b=6 // Владикавк. мат. журн.—2022.—Т. 24, вып. 2.—С. 117—123. DOI 10.46698/y5199-5569-8011-v.

1. Введение

Рассматриваются неориентированные графы без петель и кратных ребер. Для вершины a графа Γ через $\Gamma_i(a)$ обозначим i-окрестность вершины a, т. е. подграф, индуцированный Γ на множестве всех вершин, находящихся на расстоянии i от a. Положим $[a] = \Gamma_1(a), \ a^\perp = \{a\} \cup [a].$

Пусть Γ — граф, $a,b\in\Gamma$, число вершин в $[a]\cap[b]$ обозначается через $\mu(a,b)$ (через $\lambda(a,b)$), если a,b находятся на расстоянии 2 (смежны) в Γ . Далее, индуцированный $[a]\cap[b]$ подграф называется μ -подграфом (λ -подграфом). Пусть Γ — граф диаметра d, $i\in\{1,2,3,\ldots,d\}$. Граф Γ_i имеет то же самое множество вершин, и вершины u,w смежны в Γ_i , если $d_{\Gamma}(u,w)=i$.

Если вершины u,w находятся на расстоянии i в Γ , то через $b_i(u,w)$ (через $c_i(u,w)$) обозначим число вершин в пересечении $\Gamma_{i+1}(u)$ ($\Gamma_{i-1}(u)$) с [w]. Граф Γ диаметра d называется дистанционно регулярным с массивом пересечений $\{b_0,b_1,\ldots,b_{d-1};c_1,\ldots,c_d\}$, если значения $b_i(u,w)$ и $c_i(u,w)$ не зависят от выбора вершин u,w на расстоянии i в Γ

 $^{^{\#}}$ Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований и Государственного фонда естественных наук Китая, проект № 20-51-53013, и Естественно научного фонда Китая провинции Хайнань, проект № 120RC453.

^{© 2022} Махнев А. А., Чжиган Ван.

для любого $i=0,\ldots,d$. Положим $a_i=k-b_i-c_i$. Заметим, что для дистанционно регулярного графа b_0 — это степень графа, $c_1=1$. Далее, через $p_{ij}^l(x,y)$ обозначим число вершин в подграфе $\Gamma_i(x)\cap \Gamma_j(y)$ для вершин x,y, находящихся на расстоянии l в графе Γ . В дистанционно регулярном графе числа $p_{ij}^l(x,y)$ не зависят от выбора вершин x,y, обозначаются p_{ij}^l и называются числами пересечений графа Γ (см. [1]).

Графом Шилла называется дистанционно регулярный граф Γ диаметра 3, имеющий второе собственное значение θ_1 , равное $a=a_3$. В этом случае a делит k и полагают $b=b(\Gamma)=k/a$. Далее, $a_1=a-b$ и Γ имеет массив пересечений $\{ab,(a+1)(b-1),b_2;1,c_2,a(b-1)\}$ (см. [2]). И. Н. Белоусов и А. А. Махнев нашли допустимые массивы пересечений Q-полиномиальных графов Шилла с b=6 [3].

Предложение 1. Q-полиномиальный граф Шилла $c \, b = 6$ имеет массив пересечений:

- (1) $\{42t, 5(7t+1), 3(t+3); 1, 3(t+3), 35t\}$, right $t \in \{7, 12, 17, 27, 57\}$;
- $(2)\ \{372,315,75;1,15,310\},\ \{744,625,125;1,25,620\}\ \text{или}\ \{930,780,150;1,30,775\};$
- (3) $\{312, 265, 48; 1, 24, 260\}$, $\{624, 525, 80; 1, 40, 520\}$, $\{1794, 1500, 200; 1, 100, 1495\}$ или $\{5694, 4750, 600; 1, 300, 4745\}$.

Следующие теоремы являются основными результатами работы.

Теорема 1. Дистанционно регулярные графы с массивами пересечений $\{372, 315, 75; 1, 15, 310\}$ и $\{744, 625, 125; 1, 25, 620\}$ не существуют.

Теорема 2. Дистанционно регулярный граф с массивом пересечений {1794, 1500, 200; 1, 100, 1495} не существует.

2. Тройные числа пересечений

В доказательстве теоремы используются тройные числа пересечений [4].

Пусть Γ — дистанционно регулярный граф диаметра d. Если u_1, u_2, u_3 — вершины графа Γ , r_1, r_2, r_3 — неотрицательные целые числа, не большие d, то через $\left\{ \begin{smallmatrix} u_1u_2u_3\\ r_1r_2r_3 \end{smallmatrix} \right\}$ обозначим множество вершин $w\in\Gamma$ таких, что $d(w,u_i)=r_i$, а через $\left[\begin{smallmatrix} u_1u_2u_3\\ r_1r_2r_3 \end{smallmatrix} \right]$ — число вершин в $\left\{ \begin{smallmatrix} u_1u_2u_3\\ r_1r_2r_3 \end{smallmatrix} \right\}$. Числа $\left[\begin{smallmatrix} u_1u_2u_3\\ r_1r_2r_3 \end{smallmatrix} \right]$ называются тройными числами пересечений. Для фиксированной тройки вершин u_1, u_2, u_3 вместо $\left[\begin{smallmatrix} u_1u_2u_3\\ r_1r_2r_3 \end{smallmatrix} \right]$ будем писать $\left[r_1r_2r_3 \right]$. К сожалению, для чисел $\left[r_1r_2r_3 \right]$ нет общих формул. Однако в $\left[4 \right]$ предложен метод вычисления некоторых чисел $\left[r_1r_2r_3 \right]$.

Пусть u, v, w — вершины графа $\Gamma, W = d(u,v), U = d(v,w), V = d(u,w)$. Так как имеется точно одна вершина x = u такая, что d(x,u) = 0, то число [0jh] равно 0 или 1. Отсюда $[0jh] = \delta_{jW}\delta_{hV}$. Аналогично $[i0h] = \delta_{iW}\delta_{hU}$ и $[ij0] = \delta_{iU}\delta_{jV}$.

Другое множество уравнений можно получить, фиксируя расстояние между двумя вершинами из $\{u,v,w\}$ и сосчитав число вершин, находящихся на всех возможных расстояниях от третьей:

$$\sum_{l=1}^{d} [ljh] = p_{jh}^{U} - [0jh], \quad \sum_{l=1}^{d} [ilh] = p_{ih}^{V} - [i0h], \quad \sum_{l=1}^{d} [ijl] = p_{ij}^{W} - [ij0]. \tag{+}$$

При этом некоторые тройки исчезают. При |i-j| > W или i+j < W имеем $p_{ij}^W = 0$, поэтому [ijh] = 0 для всех $h \in \{0, \dots, d\}$.

поэтому [ijh]=0 для всех $h\in\{0,\ldots,d\}$. Положим $S_{ijh}(u,v,w)=\sum_{r,s,t=0}^dQ_{ri}Q_{sj}Q_{th}\left[\begin{smallmatrix}uvw\\rst\end{smallmatrix}\right]$. Если параметр Крейна $q_{ij}^h=0$, то $S_{ijh}(u,v,w)=0$.

Зафиксируем вершины u,v,w дистанционно регулярного графа Γ диаметра 3 и положим $\{ijh\} = {uvw \atop ijh}\}$, $[ijh] = {uvw \atop ijh}$, $[ijh]' = {uvw \atop ijh}$, $[ijh]^* = {uvw \atop ihj}$, $[ijh]^* = {uvw \atop ijh}$ и $[ijh]^\sim = {uvw \atop hji}$. В случаях d(u,v) = d(u,w) = d(v,w) = 2 или d(u,v) = d(u,w) = d(v,w) = 3 вычисление чисел $[ijh]' = {uvw \atop ihj}$, $[ijh]^* = {uvw \atop jih}$ и $[ijh]^\sim = {uvw \atop hji}$ (симметризация массива тройных чисел пересечений) может дать новые соотношения, позволяющие доказать несуществование графа.

3. Графы с массивом пересечений {372, 315, 75; 1, 15, 310} и {744, 625, 125; 1, 25, 620}

Пусть Γ — дистанционно регулярный граф с массивом пересечений $\{372,315,75;1,15,310\}$, u — вершина графа Γ и $\Sigma=[u]$. Тогда многочлен Тервиллигера (см. [5]) графа Γ равен -15(2x-19)(x+6)(x+1)(x-44), поэтому собственные значения локального подграфа Σ содержатся в множестве $[-6,-1] \cup (19/2,44]$. С другой стороны, по предложению 4.4.3 из [1] собственные значения локального подграфа содержатся в [-6,19/2). Отсюда локальный подграф является объединением изолированных (a_1+1) -клик, противоречие с тем, что $a_1+1=57$ не делит k=372.

Г — дистанционно регулярный граф массивом пересечений $\{744, 625, 125; 1, 25, 620\}.$ Тогда многочлен Тервиллигера Γ графа равен -5(6x-119)(x+6)(x+1)(x-94). Отсюда собственные значения локального графа содержатся в $[-6,-1] \cup (119/6,94]$. С другой стороны, по предложению 4.4.3 из [1] собственные значения локального подграфа содержатся в [-6, 119/6). Отсюда локальный подграф является объединением изолированных (a_1+1) -клик, противоречие с тем что $a_1 + 1 = 119$ не делит k = 744.

Теорема 1 доказана.

4. Граф с массивом пересечений {1794, 1500, 200; 1, 100, 1495}

В этом разделе Γ — дистанционно регулярный граф с массивом пересечений $\{294,250,30;1,30,245\}$. Пусть Γ — дистанционно регулярный граф с массивом пересечений $\{1794,1500,200;1,100,1495\}$. Так как многочлен Тервиллигера (см. [5]) равен $-5(x^2-153x+1346)(x+6)(x-59)$, то неглавные собственные значения локального подграфа лежат в $[-6,-5/2\sqrt{721}+153/2]\cup\{59\}\cup\{293\}$.

Далее, Γ имеет 1+1794+26910+3600=32305 вершин, спектр 1794^1 , 299^{426} , 19^{15548} , -26^{16330} и дуальную матрицу собственных значений

$$Q = \begin{pmatrix} 1 & 426 & 15548 & 16330 \\ 1 & 71 & \frac{494}{3} & -\frac{710}{3} \\ 1 & 0 & -\frac{364}{9} & \frac{355}{9} \\ 1 & -\frac{71}{2} & \frac{3887}{18} & -\frac{1633}{9} \end{pmatrix}.$$

Лемма 1. Для чисел пересечений графа Γ выполняются равенства:

- $(1)\ p_{11}^1=293,\, p_{21}^1=1500,\, p_{32}^1=3000,\, p_{22}^1=22410,\, p_{33}^1=600;$
- (2) $p_{11}^2 = 100$, $p_{12}^2 = 1494$, $p_{13}^2 = 200$, $p_{22}^2 = 22415$, $p_{23}^2 = 3000$, $p_{33}^2 = 400$;
- $(3)\ p_{12}^3=1495,\ p_{13}^3=299,\ p_{22}^3=22425,\ p_{23}^3=2990,\ p_{33}^3=310.$
- ⊲ Прямые вычисления. ⊳

Пусть $u \in \Gamma$, $\Delta = \Gamma_2(u)$, $\Lambda = \Delta_2$. Тогда Λ — регулярный граф степени 22415 на 26910 вершинах.

Лемма 2. Пусть d(u,v) = d(u,w) = 2, d(v,w) = 1. Тогда выполняются равенства:

$$[111] = r_3, [112] = [121] = -r_3 + 100, [122] = (23r_3 + 4r_4 + 3082)/3,$$

$$[123] = [132] = (-20r_3 - 4r_4 + 1100)/3, [133] = (20r_3 + 4r_4 - 500)/3;$$

$$[211] = (7r_3 + 2r_4 + 479)/3, [212] = [221] = (-7r_3 - 2r_4 + 4000)/3,$$

$$[222] = (-13r_3 - 5r_4 + 56545)/3,$$

$$[223] = [232] = (20r_3 + 7r_4 + 6700)/3, [233] = (-20r_3 - 7r_4 + 2300)/3;$$

$$[311] = (-10r_3 - 2r_4 + 400)/3, [312] = [321] = (10r_3 + 2r_4 + 200)/3,$$

$$[322] = (-10r_3 + r_4 + 7600)/3, [323] = [332] = -r_4 + 400, [333] = r_4,$$

где $r_3 \in \{0, 1, \dots, 40\}$, $r_4 \in \{0, 1, \dots, 200\}$, $5r_3 + r_4 \leqslant 200$ и число $-r_3 + r_4 + 1$ делится на 3.

 \lhd Упрощение формул (+) с учетом равенств $S_{113}(u,v,w)=S_{131}(u,v,w)=S_{311}(u,v,w)=0.$

Так как $[122] = (23r_3 + 4r_4 + 3082)/3$, то $2r_3 + r_4 + 1$ делится на 3.

По лемме 2 имеем $18342 \leqslant [222] = (-13r_3 - 5r_4 + 56545)/3 \leqslant 18848.$

Лемма 3. Пусть d(u,v) = d(u,w) = 2, d(v,w) = 3. Тогда выполняются равенства:

$$[112] = -r_{12}/6 + 2r_{13}/3 - 2r_{14}/9 + 320/9, \ [113] = r_{12}/6 - 2r_{13}/3 + 2r_{14}/9 + 580/9, \\ [121] = 7r_{12}/12 + r_{13}/6 + r_{14}/9 + 65/9, \ [122] = -7r_{12}/12 - 7r_{13}/6 - r_{14}/9 + 13381/9, \\ [123] = r_{13}, \ [131] = -7r_{12}/12 - r_{13}/6 - r_{14}/9 + 835/9, \\ [132] = 3r_{12}/4 + r_{13}/2 + r_{14}/3 - 85/3, \ [133] = -r_{12}/6 - r_{13}/3 - 2r_{14}/9 + 1220/9; \\ [212] = 7r_{12}/6 - 2r_{13}/3 + 2r_{14}/9 + 11335/9, \ [213] = -7r_{12}/6 + 2r_{13}/3 - 2r_{14}/9 + 2111/9, \\ [221] = -13r_{12}/12 + 5r_{13}/6 - 7r_{14}/9 + 12100/9, \ [222] = -r_{12}/12 - r_{13}/6 + 14r_{14}/9 + 164755/9, \\ [223] = 7r_{12}/6 - 2r_{13}/3 - 7r_{14}/9 + 24880/9, \ [231] = 13r_{12}/12 - 5r_{13}/6 + 7r_{14}/9 + 1346/9, \\ [232] = -13r_{12}/12 + 5r_{13}/6 - 16r_{14}/9 + 25645/9, \ [233] = r_{14}; \\ [312] = -r_{12} + 200, \ [313] = r_{12}, \ [321] = r_{12}/2 - r_{13} + 2r_{14}/3 + 430/3, \\ [322] = 2r_{12}/3 + 4r_{13}/3 - 13r_{14}/9 + 23680/9, \ [323] = -7r_{12}/6 - r_{13}/3 + 7r_{14}/9 + 2030/9, \\ [331] = -r_{12}/2 + r_{13} - 2r_{14}/3 + 170/3, \ [332] = r_{12}/3 - 4r_{13}/3 + 13r_{14}/9 + 1520/9, \\ [333] = r_{12}/6 + r_{13}/3 - 7r_{14}/9 + 1570/9, \\$$

где $r_{12} \in \{0,2,\ldots,152\}$, $r_{13} \in \{0,1,\ldots,200\}$, $r_{14} \in \{1,4,\ldots,310\}$, числа r_{12} и $3r_{12}/2+r_{13}$ четны, а число $r_{14}-1$ делится на 3.

 \triangleleft Упрощение формул (+) с учетом равенств $S_{113}(u,v,w) = S_{131}(u,v,w) = S_{311}(u,v,w) = 0.$

Так как $[112] = -r_{12}/6 + 2r_{13}/3 - 2r_{14}/9 + 320/9$, то r_{12} четно. Далее, $[132] = 3r_{12}/4 + r_{13}/2 + r_{14}/3 - 85/3$, поэтому $3r_{12}/2 + r_{13}$ четно. Аналогично $3[323] = -7r_{12}/2 - r_{13} + 7r_{14}/3 + 2030/3$ и $r_{14} - 1$ делится на 3.

Симметризация. [233] = $r_{14} = r_{14}'$, [132] = $3r_{12}/4 + r_{13}/2 + r_{14}/3 - 85/3 = [123]' = r_{13}'$, поэтому $9r_{12} + 6r_{13} + 4r_{14} - 12r_{13}' = 340$, [331] = $-r_{12}/2 + r_{13} - 2r_{14}/3 + 170/3 = [313]' = r_{12}'$ и $3r_{12} - 6r_{13} + 4r_{14} + 6r_{12}' = 340$. Отсюда $r_{12} + 2r_{13} = 2r_{13}' + r_{12}'$.

По лемме 3 имеем

$$18261 \le \lceil 222 \rceil = -r_{12}/12 - r_{13}/6 + 14r_{14}/9 + 164755/9 \le 14 \cdot 310/9 + 164755/9 = 18788.$$

Напомним, что $p_{12}^2=1494,~p_{22}^2=22415,~p_{23}^2=3000,$ поэтому число d ребер между $\Lambda(w)$ и $\Lambda-(\{w\}\cup\Lambda(w))$ удовлетворяет неравенствам

 $82185948 = 1494 \cdot 18342 + 3000 \cdot 18261 \le d \le 1494 \cdot 18848 + 3000 \cdot 18788 = 84522912.$

С другой стороны, $d=22415(22414-\lambda)$, где λ — среднее значение параметра $\lambda(\Lambda)$. Поэтому $3666.56\leqslant 22414-\lambda\leqslant 3770.82$ и $18643.18\leqslant \lambda\leqslant 18747.44$. \triangleright

Лемма 4. Пусть d(u,v) = d(u,w) = d(v,w) = 2. Тогда выполняются равенства:

$$[111] = -r_{10}/5 + 3r_{11}/20 + r_{7}/2 + 2r_{8}/5 - 3r_{9}/10,$$

$$[112] = r_{10}/5 - 3r_{11}/20 - r_{7}/2 - 2r_{8}/5 - 7r_{9}/10 + 100, [113] = r_{9},$$

$$[121] = r_{10}/5 + 7r_{11}/20 - 3r_{7}/2 - 9r_{8}/10 + 3r_{9}/10 + 100,$$

$$[122] = -r_{10}/5 - 7r_{11}/20 + 3r_{7}/2 + 19r_{8}/10 + 7r_{9}/10 + 1194, [123] = -r_{8} - r_{9} + 200,$$

$$[131] = -r_{11}/2 + r_{7} + r_{8}/2, [132] = r_{11}/2 - r_{7} - 3r_{8}/2 + 200, [133] = r_{8};$$

$$[211] = r_{10}/5 - 3r_{11}/20 - 3r_{7}/2 - 2r_{8}/5 + 3r_{9}/10 + 100,$$

$$[212] = -r_{10}/5 + 23r_{11}/20 + 3r_{7}/2 + 2r_{8}/5 + 7r_{9}/10 + 1194, [213] = -r_{11} - r_{9} + 200,$$

$$[221] = -r_{10}/5 - 7r_{11}/20 + 9r_{7}/2 + 19r_{8}/10 - 23r_{9}/10 + 1194,$$

$$[222] = -4r_{10}/5 - 13r_{11}/20 - 9r_{7}/2 - 29r_{8}/10 + 13r_{9}/10 + 18820,$$

$$[223] = r_{10} + r_{11} + r_{8} + r_{9} + 2400, [231] = r_{11}/2 - 3r_{7} - 3r_{8}/2 + 2r_{9} + 200,$$

$$[232] = -r_{11}/2 + 3r_{7} + 5r_{8}/2 - 2r_{9} + 2400, [233] = -r_{10} - r_{8} + 400; [311] = r_{7},$$

$$[312] = -r_{11} - r_{7} + 200, [313] = r_{11}, [321] = -3r_{7} - r_{8} + 2r_{9} + 200,$$

$$[322] = r_{10} + r_{11} + 3r_{7} + r_{8} - 2r_{9} + 2400, [323] = -r_{10} - r_{11} + 400,$$

$$[331] = 2r_{7} + r_{8} - 2r_{9}, [332] = -r_{10} - 2r_{7} - r_{8} + 2r_{9} + 400, [333] = r_{10},$$

где $r_7, r_9 \in \{0, 1, \dots, 100\}, r_{10} \in \{0, 1, \dots, 320\}, r_8, r_{11} \in \{0, 1, \dots, 200\}$ и $r_8 - r_{11}$ четно.

 \triangleleft Упрощение формул (+) с учетом равенств $S_{113}(u,v,w) = S_{131}(u,v,w) = S_{311}(u,v,w) = 0$ дает требуемые равенства.

Далее, $[132] = r_{11}/2 - r_7 - 3r_8/2 + 200$, поэтому $r_8 - r_{11}$ четно.

Симметризация. [113] = $r_9 = r_9^*$, [133] = $r_8 = r_8'$, [311] = $r_7 = r_7'$, [313] = $r_{11} = r_{11}^{\sim}$, [333] = $r_{10} = r_{10}^* = r_{10}^* = r_{10}^{\sim}$.

Далее, $[131] = -r_{11}/2 + r_7 + r_8/2 = [113]' = r_9'$, поэтому $2r_7 + r_8 = 2r_9' + r_{11}$, $[133] = r_8 = [313] = r_{11}^*$, $[113] = r_9 = [311] = r_7^{\sim}$.

По лемме 12 имеем

$$13117 \leq [222] = -109r_{10}/6 + 109r_{11}/30 - 36r_7 - 13r_8/6 + 109r_9/30 + 16198 \leq 17288.$$

Так как $\{v,w\} \cup \Lambda(v) \cup \Lambda(v)$ содержит 39298 — [222] вершин, то 15118 \leqslant [222]. Противоречие с тем, что 18643.18 $\leqslant \lambda \leqslant$ 18747.44. \rhd Теорема 2 доказана.

Литература

- 1. Brouwer A. E., Cohen A. M., Neumaier A. Distance-Regular Graphs.—Berlin—Heidelberg—N. Y.: Springer-Verlag.—1989.
- 2. Koolen J. H., Park J. Shilla distance-regular graphs // Europ. J. Comb.—2010.—Vol. 31, \mathbb{N} 8.— P. 2064—2073. DOI: 10.1016/j.ejc.2010.05.012.
- 3. Belousov I. N., Makhnev A. A. Shilla graphs with b=5 and b=6 // Ural Math. J.—2021.—Vol. 7, N^2 2.—P. 51–58. DOI: 10.15826/umj.2021.2.004.

- 4. Coolsaet K., Jurishich A. Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs // J. Comb. Theory. Ser. A.—2008.—Vol. 115, № 6.—P. 1086–1095. DOI: 10.1016/j.jcta.2007.12.001.
- 5. Gavrilyuk A. L., Koolen J. H. A characterization of the graphs of bilinear $(d \times d)$ -forms over \mathbb{F}_2 // Combinatorica.—2010.—Vol. 39, Nº 2.—P. 289–321. DOI: 10.1007/s00493-017-3573-4.

Статья поступила 30 марта 2021 г.

Махнев Александр Алексеевич

Институт математики и механики им. Н. Н. Красовского,

главный научный сотрудник

РОССИЯ, 620990, Екатеринбург, ул. С. Ковалевской, 16

E-mail: makhnev@imm.uran.ru

https://orcid.org/0000-0003-2868-6713

Чжиган Ван

Школа науки, Хайнаньский университет,

директор

КИТАЙ, 570228, Хайкоу, Хайнань

E-mail: wzhigang@hainanu.edu.cn

Vladikavkaz Mathematical Journal 2022, Volume 24, Issue 2, P. 117–123

ON Q-POLYNOMIAL SHILLA GRAPHS WITH b=6

Makhnev, A. A.¹ and Zhigang Van²

N. N. Krasovskii Institute of Mathematics and Mechanics,
 S. Kovalevskaja St., Ekaterinburg 620990, Russia;
 School of Science, Hainan University,
 Haikou 570228, Hainan, P. R. China

E-mail: makhnev@imm.uran.ru, wzhigang@hainanu.edu.cn

Abstract. Distance-regular graph Γ of diameter 3, having the second eigenvalue $\theta_1 = a_3$ is called Shilla graph. For such graph $a = a_3$ devides k and we set $b = b(\Gamma) = k/a$. Further $a_1 = a - b$ and Γ has intersection array $\{ab, (a+1)(b-1), b_2; 1, c_2, a(b-1)\}$. I. N. Belousov and A. A. Makhnev found feasible arrays of Q-polynomial Shilla graphs with b = 6: $\{42t, 5(7t+1), 3(t+3); 1, 3(t+3), 35t\}$, where $t \in \{7, 12, 17, 27, 57\}$, $\{312, 265, 48; 1, 24, 260\}$, $\{372, 315, 75; 1, 15, 310\}$, $\{624, 525, 80; 1, 40, 520\}$, $\{744, 625, 125; 1, 25, 620\}$, $\{930, 780, 150; 1, 30, 775\}$, $\{1794, 1500, 200; 1, 100, 1495\}$ or $\{5694, 4750, 600; 1, 300, 4745\}$. It is proved in the paper that graphs with intersection arrays $\{372, 315, 75; 1, 15, 310\}$, $\{744, 625, 125; 1, 25, 620\}$ and $\{1794, 1500, 200; 1, 100, 1495\}$ do not exist.

Key words: distance-regular graph, Shilla graph, triple intersection numbers.

AMS Subject Classification: 20D05.

For citation: Makhnev, A. A. and Zhigang Van. On Q-Polynomial Shilla Graphs with b=6, Vladikavkaz Math. J., 2022, vol. 24, no. 2, pp. 117–123 (in Russian). DOI: 10.46698/y5199-5569-8011-v.

References

- Brouwer, A. E., Cohen, A. M. and Neumaier, A. Distance-Regular Graphs, Berlin, Heidelberg, New York, Springer-Verlag, 1989.
- 2. Koolen, J. H. and Park, J. Shilla Distance-Regular Graphs, European Journal of Combinatorics, 2010, vol. 31, no. 8, pp. 2064–2073. DOI: 10.1016/j.ejc.2010.05.012.

- 3. Belousov, I. N. and Makhnev, A. A. Shilla Graphs with b=5 and b=6, Ural Mathematical Journal, 2021, vol. 7, no. 2, pp. 51–58. DOI: 10.15826/umj.2021.2.004.
- 4. Coolsaet, K. and Jurishich, A. Using Equality in the Krein Conditions to Prove Nonexistence of Certain Distance-Regular Graphs, Journal of Combinatorial Theory, Series A, 2008, vol. 115, no. 6, pp. 1086–1095. DOI: 10.1016/j.jcta.2007.12.001.
- 5. Gavrilyuk A. L., Koolen J. H. A Characterization of the Graphs of Bilinear $(d \times d)$ -Forms over \mathbb{F}_2 , Combinatorica, 2010, vol. 39, no. 2, pp. 289–321. DOI: 10.1007/s00493-017-3573-4.

Received March 30, 2021

ALEXANDER A. MAKHNEV

N. N. Krasovskii Institute of Mathematics and Mechanics,

 $16\ \mathrm{S.}$ Kovalevskaja St., Ekaterinburg 620990, Russia,

 $Chief\ Researcher$

E-mail: makhnev@imm.uran.ru

 $https:/\!/orcid.org/0000\text{-}0003\text{-}2868\text{-}6713$

ZHIGANG VAN

School of Science, Hainan University,

Haikou 570228, Hainan, P. R. China,

Dean of the School of Science

E-mail: wzhigang@hainanu.edu.cn