УДК 517.98 DOI 10.46698/w5172-0182-0041-с # PARTIAL INTEGRAL OPERATORS OF FREDHOLM TYPE ON KAPLANSKY–HILBERT MODULE OVER L_0 ### Yu. Kh. Eshkabilov¹ and R. R. Kucharov² Karshi State University, 17 Kuchabag St., Karshi 180117, Uzbekistan; National University of Uzbekistan, 4 University St., Tashkent 100174, Uzbekistan E-mail: ramz3364647@yahoo.com, yusup62@mail.ru Dedicated to the 80th anniversary of Professor Stefan Grigorievich Samko Abstract. The article studies some characteristic properties of self-adjoint partially integral operators of Fredholm type in the Kaplansky-Hilbert module $L_0\left[L_2\left(\Omega_1\right)\right]$ over $L_0\left(\Omega_2\right)$. Some mathematical tools from the theory of Kaplansky-Hilbert module are used. In the Kaplansky-Hilbert module $L_0\left[L_2\left(\Omega_1\right)\right]$ over $L_0\left(\Omega_2\right)$ we consider the partially integral operator of Fredholm type $T_1\left(\Omega_1\text{ and }\Omega_2\text{ are closed bounded sets in }\mathbb{R}^{\nu_1}\text{ and }\mathbb{R}^{\nu_2},\ \nu_1,\nu_2\in\mathbb{N}$, respectively). The existence of $L_0\left(\Omega_2\right)$ nonzero eigenvalues for any self-adjoint partially integral operator T_1 is proved; moreover, it is shown that T_1 has finite and countable number of real $L_0\left(\Omega_2\right)$ -eigenvalues. In the latter case, the sequence $L_0\left(\Omega_2\right)$ -eigenvalues is order convergent to the zero function. It is also established that the operator T_1 admits an expansion into a series of ∇_1 -one-dimensional operators. Key words: partial integral operator, Kaplansky–Hilbert module, L_0 -eigenvalue. Mathematical Subject Classification (2010): 45A05, 47A10, 47G10, 45P05, 45B05, 45C05. For citation: Eshkabilov, Yu. Kh. and Kucharov, R. R. Partial Integral Operators of Fredholm Type on Kaplansky–Hilbert Module over L_0 , Vladikavkaz Math. J., 2021, vol. 23, no. 3, pp. 80–90. DOI: 10.46698/w5172-0182-0041-c. #### 1. Introduction Linear equations and operators involving partial integrals appear in elasticity theory, continuum mechanics, aerodynamics and in PDE theory [1]. Self-adjoint partial integral operators arise in the theory of Schrodinger operators [2, 3]. Spectral properties of a discrete Schrodinger operator H are closely related (see [3, 4]) to the partial integral operators which participate in the presentation of operator H. Let Ω_1 and Ω_2 be closed bounded subsets in \mathbb{R}^{ν_1} and \mathbb{R}^{ν_2} , respectively. Partial integral operator (PIO) of Fredholm type in the space $L_p(\Omega_1 \times \Omega_2)$, $p \geqslant 1$, is an operator of the form [1] $$T = T_0 + T_1 + T_2 + K, (1)$$ where operators T_0 , T_1 , T_2 and K are defined by the following formulas $$T_0 f(x, y) = k_0(x, y) f(x, y),$$ ^{© 2021} Eshkabilov, Yu. Kh. and Kucharov, R. R. $$T_1 f(x,y) = \int_{\Omega_1} k_1(x,s,y) f(s,y) ds,$$ $$T_2 f(x,y) = \int_{\Omega_2} k_2(x,t,y) f(x,t) dt,$$ $$K f(x,y) = \int_{\Omega_1} \int_{\Omega_2} k(x,y;s,t) f(s,t) ds dt.$$ (2) Here k_0 , k_1 , k_2 and k are given measurable functions on $\Omega_1 \times \Omega_2$, $\Omega_1^2 \times \Omega_2$, $\Omega_1 \times \Omega_2^2$ and $(\Omega_1 \times \Omega_2)^2$, respectively, and all integrals have to be understood in the Lebesgue sense, where $ds = d\mu_1(s), dt = d\mu_2(t), \mu_k(\cdot)$ — the Lebesgue measure on the σ -algebra of subsets Ω_k , k = 1, 2. Furthermore, some simple solvability conditions for the equations Tf = q were investigated by several authors (see, for example, [1] and its references). Spectral properties of the given operator has been studied in [1, 4, 5]. Nevertheless, the description of the spectra of self-adjoint PIOs with L_2 kernels remains an open question. Difficulty of this problem is connected with non-compactness of the operators T_1 and T_2 . The article studies some characteristic properties of self-adjoint partially integral operators of Fredholm type in the Kaplansky-Hilbert module $L_0[L_2(\Omega_1)]$ over $L_0(\Omega_2)$. The mathematical tools from the Kaplansky-Hilbert module is used as presented in [6]. The paper is organized as follows. In Section 3 we prove the existence of an L_0 -eigenvalue for the PIO T_1 . In Section 4 we study existence of the countable consequence of real L_0 -eigenvalues for PIO T_1 . In Section 5 it is given the decomposition of the PIO T_1 in series of ∇_1 -one-dimensional operators. In Section 5 (in section 6) is given decomposition of the PIO T_1 (the PIO T_2) in series of ∇_{1} - (∇_{2} -) one-dimensional operators. #### 2. Kaplansky–Hilbert Module over L_0 Recall some notions and results from the theory of Kaplansky-Hilbert modules (see [6]). Let $(\Omega_k, \Sigma_k, \mu_k)$ be a space with complete finite measure μ_k , $L_0(\Omega_k)$ -algebra of equivalence classes of all complex measurable functions on $(\Omega_k, \Sigma_k, \mu_k)$, where k = 1, 2. We denote by $L_0[L_2(\Omega_1)]$ the set of equivalence classes of all complex measurable functions f(x,y) on $\Omega_1 \times$ Ω_2 , which satisfies the condition: the integral $$\varphi(y) = \int_{\Omega_1} |f(x,y)|^2 d\mu_1(x)$$ exists for almost all $y \in \Omega_2$ and $\varphi \in L_0(\Omega_2)$. We consider the map $\langle \cdot, \cdot \rangle_1 : L_0[L_2(\Omega_1)] \times L_0[L_2(\Omega_1)] \to L_0(\Omega_2)$ by rule $$\langle f, g \rangle_1 = \int_{\Omega_1} f(s, y) \overline{g(s, y)} \, d\mu_1(s).$$ It is clear, that the map $\langle \cdot, \cdot \rangle_1$ satisfies the conditions of $L_0(\Omega_2)$ -valued inner product. For each $f \in L_0[L_2(\Omega_1)]$ we define L_0 -norm: $$||f||_1(\omega) = \sqrt{\langle f, f \rangle_1(\omega)}.$$ Then $L_0[L_2(\Omega_1)]$ is Banach–Kantorovich space over $L_0(\Omega_2)$ [6, 7]. Consequently, the space $L_0[L_2(\Omega_1)]$ is Kaplansky-Hilbert module over $L_0(\Omega_2)$ with the inner product $\langle \cdot, \cdot \rangle_1(\omega)$. If for the map $A: L_0[L_2(\Omega_1)] \to L_0[L_2(\Omega_1)]$ the equality $A(\alpha \cdot f + \beta \cdot g) = \alpha \cdot Af + \beta \cdot Ag$ is hold for all $\alpha, \beta \in L_0(\Omega_2)$, $f, g \in L_0[L_2(\Omega_1)]$, then A is called $L_0(\Omega_2)$ -linear operator. If for the $L_0(\Omega_2)$ -linear operator A there exists $C = C(\omega) \in L_0(\Omega_2)$ such that, $||Af||_1(\omega) \leq C(\omega)||f||_1(\omega)$ for all $f \in L_0[L_2(\Omega_1)]$, then A is called $L_0(\Omega_2)$ -bounded operator. For each $L_0(\Omega_2)$ -linear $L_0(\Omega_2)$ -bounded operator A we define $L_0(\Omega_2)$ -norm by the rule $$||A||_1 = ||A||_1(\omega) = \sup\{||Af||_1(\omega) : ||f||_1 \le \mathbf{e}\}.$$ We say the net $(\xi_{\alpha})_{\alpha \in A} \subset L_0(\Omega_2)$ (o)-converges to the element $\xi \in L_0(\Omega_2)$, whenever there is a decreasing net $(e_{\beta})_{\beta \in B} \subset L_0(\Omega_2)$ such that $\inf\{e_{\beta} : \beta \in B\} = \theta$ and for each $\beta \in B$ there is an index $\alpha(\beta) \in A$ with $|\xi_{\alpha} - \xi| \leq e_{\beta}$ for all $\alpha \in A : \alpha(\beta) \leq \alpha$. In this case, the element ξ is called (o)-limit of the set $(\xi_{\alpha})_{\alpha \in A}$ and we write $\xi = (o)$ - $\lim \xi_{\alpha}$. We know [8], that the (o)-converges of the net $(\xi_{\alpha})_{\alpha \in A} \subset L_0(\Omega_2)$ to the element ξ is equivalent to converges almost everywhere to the element ξ of the net $(\xi_{\alpha})_{\alpha \in A} \subset L_0(\Omega_2)$. The net $(f_{\alpha})_{\alpha \in A}$ in $L_0[L_2(\Omega_1)]$ is called (bo)-converging to $f \in L_0[L_2(\Omega_1)]$, if (o)- $\lim ||f_{\alpha} - f||_1 = \theta$ in $L_0(\Omega_2)$. Let Λ_2 be the Boolean algebra of idempotents in $L_0(\Omega_2)$. If $(f_{\alpha})_{\alpha \in A} \subset L_0[L_2(\Omega_1)]$ and $(\pi_{\alpha})_{\alpha \in A}$ is a partition of the unit in Λ_2 , then the series $\sum_{\alpha} \pi_{\alpha} \cdot f_{\alpha}$ (bo)-converges in $L_0[L_2(\Omega_1)]$ and its sum is called the mixing of $(f_{\alpha})_{\alpha \in A}$ with respect to $(\pi_{\alpha})_{\alpha \in A}$. We denote this sum by $\min(\pi_{\alpha}f_{\alpha})$. A subset $K \subset L_0[L_2(\Omega_1)]$ is called cyclic, if $\min(\pi_{\alpha}f_{\alpha}) \in K$ for each $(f_{\alpha})_{\alpha \in A} \subset K$ and any partition of the unit $(\pi_{\alpha})_{\alpha \in A}$ in Λ_2 . A subset $K \subset L_0[L_2(\Omega_1)]$ is called cyclically compact, if K is cyclic and every net in K has a cyclic subset that (bo)-converges to some point of K. A subset is called relatively cyclically compact, if it is contained in a cyclically compact set. A L_0 -linear operator in $L_0[L_2(\Omega_1)]$ is called *cyclically compact*, if for every L_0 -bounded set B in $L_0[L_2(\Omega_1)]$ the set A(B) is relatively cyclically compact in $L_0[L_2(\Omega_1)]$. Let T_1 be an operator in the Kaplansky–Hilbert module $L_0[L_2(\Omega_1)]$ over $L_0(\Omega_2)$ given by the formula $$(T_1 f)(x, y) = \int_{\Omega_1} k_1(x, s, y) f(s, y) d\mu_1(s).$$ (3) Here, $k_1(x, s, y)$ is a measurable function on $\Omega_1^2 \times \Omega_2$. Let the kernel $k_1(x, s, y)$ of the integral operator T_1 satisfy the condition $$\int_{\Omega_1} \int_{\Omega_1} |k_1(x, s, y)|^2 d\mu_1(s) d\mu_1(x) \in L_0(\Omega_2).$$ (4) Then, the operator T_1 with values in $L_0(\Omega_2)$ is linear and bounded on $L_0[L_2(\Omega_1)]$. Also, let the kernel $k_1(x, s, y)$ satisfy the condition: $$k_1(x, s, y) = \overline{k_1(s, x, y)}.$$ Then the operator T_1 is a self-adjoint operator on the Kaplansky-Hilbert module $L_0[L_2(\Omega_1)]$, i. e., $$\langle T_1 f, g \rangle_1 = \langle f, T_1 g \rangle_1.$$ A system $\{f_{\alpha}(x,y)\}\subset L_0[L_2(\Omega_1)]$ is ∇_1 -orthogonal system, if $\langle f_{\alpha}, f_{\beta}\rangle_1=\theta, \ \alpha\neq\beta$. A ∇_1 -orthogonal system $\{f_{\alpha}(x,y)\}\subset L_0[L_2(\Omega_1)]$ is said to be ∇_1 -orthonormal system, if $\langle f_{\alpha}, f_{\alpha}\rangle_1=\mathbf{e}$. Note that, the PIO T_1 is a good example for cyclically compact operators on Kaplansky–Hilbert module [7]. #### 3. L_0 -Eigenvalue of the Partial Integral Operator T_1 In this section we prove the existence of an L_0 -eigenvalue for the PIO. Put $\mathscr{H} = L_0[L_2(\Omega_1)]$. **Theorem 3.1.** The partial integral operator T_1 has non zero L_0 -eigenvalue. < Put $$\mathscr{D}_0 = \left\{ \omega \in \Omega_2 : \int_{\Omega_1} \int_{\Omega_1} |k_1(x, s, \omega)|^2 d\mu_1(x) d\mu_1(s) > 0 \right\}.$$ Then $\mu_2(\mathcal{D}_0) = 0$. For each $f \in \mathcal{H}$, $f \neq \theta$ we define subset $\operatorname{supp}_{\Omega_2}(f)$ with positive measure by the following equality $$\sup_{\Omega_2}(f) = \{ \omega \in \Omega_2 : \langle f, f \rangle_1(\omega) \neq 0 \}.$$ Let $f_0 \in \mathcal{H}$, $||f_0||_1(\omega) \neq 0$ for all $\omega \in \mathcal{D}_0$ and $T_1 f_0 \neq \theta$. It is clear, that $T_1^n f_0 \neq \theta$ for all $n \in \mathbb{N}$, as: if $$T_1^k f_0 \neq \theta$$, $T_1^{k+1} f_0 = \theta$, for some $k \geqslant 1$ then we get a contradiction $$\theta = \left\langle T_1^{k+1} f_0, T_1^{k-1} f_0 \right\rangle_1(\omega) = \left\langle T_1^k f_0, T_1^k f_0 \right\rangle_1(\omega) \neq \theta.$$ We construct two sequences $\{\widetilde{f}_k(x,\omega)\}_{k\in\mathbb{N}_0}$, $\{f_k(x,\omega)\}_{k\in\mathbb{N}_0}$ of functions from the Kaplansky–Hilbert module $L_0[L_2(\Omega_1)]$ ($\mathbb{N}_0=\mathbb{N}\cup 0$): $$\widetilde{f}_k(x,\omega) = \begin{cases} \frac{f_k(x,\omega)}{\|f_k\|_1(\omega)}, & x \in \Omega_1, \ \omega \in \sup_{\Omega_2}(f_k), \\ 0, & x \in \Omega_1, \ \omega \in \Omega_2 \setminus \sup_{\Omega_2}(f_k), \end{cases}$$ $$f_{k+1}(x,\omega) = (T_1 \widetilde{f}_k)(x,\omega).$$ It follows from [9] that $$||f_k||_1(\omega) \leqslant ||f_{k+1}||_1(\omega), \quad k \in \mathbb{N}, \tag{5}$$ and $$||f_{k+1}||_1(\omega) \cdot ||f_k||_1(\omega) = \langle f_{k-1}, f_{k+1} \rangle_1(\omega) = \langle f_{k+1}, f_{k-1} \rangle_1(\omega), \quad k \in \mathbb{N}.$$ (6) On the other hand $$||T_1\widetilde{f}_{k-1}||_1(\omega) \leqslant ||T_1||_1(\omega), \quad k \in \mathbb{N},$$ where $||T_1||_1(\omega) \in L_0(\Omega_2)$ is the $L_0(\Omega_2)$ valued norm of the PIO T_1 . Consequently, $$||f_k||_1(\omega) \leqslant ||T_1||_1(\omega), \quad k \in \mathbb{N}.$$ Thus, for almost all $\omega \in \Omega_2$ the sequence $\{\|f_k\|_1(\omega)\}_{k\in\mathbb{N}}$ has a finite limit $\lambda(\omega) \geq 0$, i. e., $$\lim_{k \to \infty} ||f_k||_1(\omega) = \lambda(\omega),\tag{7}$$ for almost all $\omega \in \Omega_2$. We have $\lambda(\omega) \in L_0(\Omega_2)$, as $||f_k||_1(\omega) \in L_0(\Omega_2)$, $k \in \mathbb{N}$. From the relation (5) it follows that $\lambda \neq \theta$. Now, we define the family of integral operators $\{T_1(\omega)\}$ on $L_2(\Omega_1)$ by $$T_1(\omega)\varphi(x) = \int_{\Omega_1} k_1(x, s, \omega)\varphi(s) d\mu_1(s), \quad \varphi \in L_2(\Omega_1), \ \omega \in \Omega_2.$$ Then, $T_1(\omega)$ is a compact operator on $L_2(\Omega_1)$ for almost all $\omega \in \Omega_2$. By the compactness of the operator $T_1(\omega)$ there exists subsequence $\widetilde{f}_{n_i}(x,\omega)$ such that $f_{n_i+1}(x,\omega) = T_1(\omega)\widetilde{f}_{n_i}(x,\omega)$ has a limit $g(x,\omega)$ in the L_0 -norm $\|\cdot\|_1$. It is clear $g \in \mathscr{H}$ and $g \neq \theta$. Analogously, for each sequence $$f_{n_i+2}(x,\omega) = T_1(\omega)\widetilde{f}_{n_i+1}(x,\omega), \quad f_{n_i+3}(x,\omega) = T_1(\omega)\widetilde{f}_{n_i+2}(x,\omega)$$ we obtain $f_{n_i+2} \to h \in \mathscr{H}$ and $f_{n_i+3} \to \widetilde{h} \in \mathscr{H}$ by the L_0 -norm $\|\cdot\|_1$. Using the relations (6), (7) we obtain $$\begin{split} \|\widetilde{h} - g\|_1^2(\omega) &= \lim_{k \to \infty} \|f_{n_k+3} - f_{n_k+1}\|_1^2(\omega) \\ &= \lim_{k \to \infty} \left\{ \|f_{n_k+3}\|_1^2(\omega) + \|f_{n_k+1}\|_1^2(\omega) - \langle f_{n_k+3}, f_{n_k+1} \rangle_1(\omega) - \langle f_{n_k+1}, f_{n_k+3} \rangle_1(\omega) \right\} = 0 \end{split}$$ for almost all $\omega \in \Omega_2$ and so $\tilde{h} = g$. On the other hand, from the equalities $$f_{n_k+2}(x,\omega) = \begin{cases} \frac{(T_1(\omega)f_{n_k+1})(x,\omega)}{\|f_{n_k+1}\|_1(\omega)}, & x \in \Omega_1, \ \omega \in \sup_{\Omega_2} (f_{n_k+1}), \\ 0, & x \in \Omega_1, \ \omega \in \Omega_2 \setminus \sup_{\Omega_2} (f_{n_k+1}), \end{cases}$$ $$f_{n_k+3}(x,\omega) = \begin{cases} \frac{(T_1(\omega)f_{n_k+2})(x,\omega)}{\|f_{n_k+2}\|_1(\omega)}, & x \in \Omega_1, \ \omega \in \sup_{\Omega_2} (f_{n_k+2}), \\ 0, & x \in \Omega_1, \ \omega \in \Omega_2 \setminus \sup_{\Omega_2} (f_{n_k+2}) \end{cases}$$ we have $$||f_{n_k+1}||_1(\omega) \cdot f_{n_k+2}(x,\omega) = (T_1(\omega)f_{n_k+1})(x,\omega), \quad \omega \in \Omega_2,$$ (8) $$||f_{n_k+2}||_1(\omega) \cdot f_{n_k+3}(x,\omega) = (T_1(\omega)f_{n_k+2})(x,\omega), \quad \omega \in \Omega_2.$$ (9) It is clear that $$\lim_{k \to \infty} \|f_{n_k+1}\|_1(\omega) = \|g\|_1(\omega) = \lim_{k \to \infty} \|f_{n_k+2}\|_1(\omega) = \|h\|_1(\omega)$$ $$= \lim_{k \to \infty} \|f_{n_k+3}\|_1(\omega) = \|\widetilde{h}\|_1(\omega) = \lambda(\omega).$$ From the equalities (8), (9) it follows that $$\lambda(\omega) \cdot h(x,\omega) = T_1(\omega)g(x,\omega), \quad \lambda(\omega) \cdot \widetilde{h}(x,\omega) = T_1(\omega)h(x,\omega),$$ i. e., $$(T_1g)(x,y) = \lambda(y) \cdot h(x,y), \quad (T_1h)(x,y) = \lambda(y) \cdot g(x,y).$$ Hence it follows that $$T_1(h+q)(x,y) = \lambda(y) \cdot (h+q)(x,y), \quad T_1(h-q)(x,y) = -\lambda(y) \cdot (h-q)(x,y).$$ We know, that $h \neq \theta$, $g \neq \theta$. Hence we can conclude that: $h + g \neq \theta$ or $h - g \neq \theta$. It means that the function $\lambda(y)$ is an L_0 -eigenvalue of the PIO T_1 . \triangleright # 4. Spectral Properties of the Partial Integral Operator T_1 on the Kaplansky-Hilbert Module $L_0[L_2(\Omega_1)]$ **Theorem 4.1.** For a PIO T_1 the following function $\lambda_0(\omega) = \sup_{\|g\|_1 = \mathbf{e}} |\langle T_1 g, g \rangle_1(\omega)|$ is nonzero and either $+\lambda_0(\omega)$ or $-\lambda_0(\omega)$ is L_0 -eigenvalue of the T_1 . ⊲ Put $$\Omega_0 = \left\{ \omega \in \Omega_2 : \int_{\Omega_1} \int_{\Omega_1} |k_1(x, s, \omega)|^2 d\mu_1(x) d\mu_1(s) > 0 \right\}.$$ From the $T_1 \neq \theta$ it follows that $\lambda_0(\omega) \neq 0$ for all $\omega \in \Omega_0$, i. e., $\lambda_0 \neq \theta$. It is clear, that there is a sequence of ∇_1 -normal functions $\{g_n\}_{n=1}^{\infty}$, in which a limit exists (o)- $$\lim_{n\to\infty} \langle T_1 g_n, g_n \rangle_1(\omega) = \lambda(\omega),$$ and $\lambda(\omega)$ is a real function on Ω_2 , where $\lambda(\omega) = +\lambda_0(\omega)$ or $-\lambda_0(\omega)$. Consequently, $\lambda_0 \in L_0(\Omega_2)$ and $\operatorname{supp}(\lambda) = \Omega_0$. By cyclical compactness of the PIO T_1 there exists a subsequence $\{g_{n_i}\}_{i=1}^{\infty}$ with (bo)- $$\lim_{k \to \infty} (T_1 g_{n_k})(x, y) = h(x, y).$$ (10) Clearly, $\operatorname{supp}_{\Omega_2}(h) = \Omega_0$. From the equality $$||T_1 g_{n_k} - \lambda \cdot g_{n_k}||_1^2 = ||T_1 g_{n_k}||_1^2 - 2\lambda \cdot \langle T_1 g_{n_k}, g_{n_k} \rangle_1 + \lambda^2$$ we obtain (o)- $$\lim_{k \to \infty} ||T_1 g_{n_k} - \lambda \cdot g_{n_k}||_1^2 = ||h||_1^2 - \lambda^2.$$ (11) However, $$||T_1g_{n_k}||_1(\omega) \leqslant \lambda_0(\omega) \cdot ||g_{n_k}||_1(\omega) = |\lambda(\omega)|.$$ Therefore, $$||h||_1(\omega) \leqslant |\lambda(\omega)|.$$ From this and (11) we have $||h||_1(\omega) = |\lambda(\omega)|$. Thus, (o)- $$\lim_{k \to \infty} ||T_1 g_{n_k} - \lambda \cdot g_{n_k}||_1 = \theta.$$ (12) Hence, it follows that $$T_1 f_0 = \lambda \cdot f_0$$ where $$f_0(x,\omega) = \begin{cases} \frac{h(x,\omega)}{\lambda(\omega)}, & x \in \Omega_1, \ \omega \in \text{supp}(\lambda), \\ 0, & x \in \Omega_1, \ \omega \in \Omega_2 \setminus \text{supp}(\lambda). \end{cases}$$ Put $$\pi_0(\omega) = \begin{cases} 1, & \omega \in \text{supp}(\lambda), \\ 0, & \Omega_2 \\ 0, & \omega \in \Omega_2 \setminus \text{supp}(\lambda). \end{cases}$$ Remark 4.1. Every element $\zeta \in L_0(\Omega_2)$, $\pi_0 \zeta = \lambda$ is L_0 -eigenvalue of the PIO T_1 . **Theorem 4.2.** The PIO T_1 has a finite or countable sequence of ∇_1 -orthonormal eigenfunctions $$\phi_1(x,y), \phi_2(x,y), \ldots, \phi_n(x,y), \ldots$$ corresponding to a system of real nonzero L_0 -eigenvalues $$\lambda_1(\omega), \lambda_2(\omega), \ldots, \lambda_n(\omega), \ldots,$$ where $$|\lambda_1(\omega)| \geqslant |\lambda_2(\omega)| \geqslant \ldots \geqslant |\lambda_n(\omega)| \geqslant \ldots$$ Moreover, for each $f(x,y) \in L_0[L_2(\Omega_1)]$ the equality $$||f||_1^2(\omega) = (o) - \sum_{k=1}^{\infty} |\langle f, \phi_k \rangle_1(\omega)|^2$$ holds. \lhd Put $\mathscr{H}_1 = \mathscr{H}$ and $T_1^{(1)} = T_1$. By the Theorem 4.1 there is such element $\phi_1(x,y) \in \mathscr{H}_1$ that $T_1^{(1)}\phi_1 = \lambda_1 \cdot \phi_1$, where λ_1 is a real function on Ω_2 and $\lambda_1(\omega) = \pm \sup_{\|g\|_1 = \mathbf{e}} |\langle T_1 g, g \rangle_1(\omega)|$. We define the Kaplansky-Hilbert submodule $\mathscr{H}_2 = \mathscr{H}_1 \ominus_1 \{\phi_1\}$. It is clear that if $f \in \mathscr{H}_2$, then $T_1^{(1)}f \in \mathscr{H}_2$ from the equality $\langle f, \phi_1 \rangle_1 = \theta$ it follows that $$\langle T_1^{(1)} f, \phi_1 \rangle_1 = \langle f, T_1 \phi_1 \rangle_1 = \langle f, \lambda_1 \cdot \phi_1 \rangle_1 = \theta.$$ We define an operator $T_1^{(2)}$ on the \mathcal{H}_2 by $$T_1^{(2)}f = T_1^{(1)}f, \quad f \in \mathcal{H}_2.$$ The operator $T_1^{(2)}$ is a selfadjoint PIO on the \mathscr{H}_2 . If $T_1^{(2)} \neq \theta$, then we apply Theorem 4.1 to the operator $T_1^{(2)}$ and find an element $\phi_2(x,y) \in \mathscr{H}_2$ such that $T_1^{(2)}\phi_2 = \lambda_2 \cdot \phi_2$, where λ_2 is a real function on Ω_2 and $\lambda_2(\omega) = \pm \sup_{g \in \mathscr{H}_2, \|g\|_1 = \mathbf{e}} \left| \left\langle T_1^{(2)}g, g \right\rangle_1(\omega) \right|$. As $\phi_2(x,y) \in \mathscr{H}_2$, $\|\phi_2\|_1 = \mathbf{e}$, we have $\langle \phi_2, \phi_1 \rangle_1 = \theta$. Therefore, $$|\lambda_2(\omega)| = \sup_{g \in \mathcal{H}_2, \|g\|_1 = \mathbf{e}} \left| \left\langle T_1^{(1)} g, g \right\rangle_1(\omega) \right| \leqslant \sup_{g \in \mathcal{H}_1, \|g\|_1 = \mathbf{e}} \left| \left\langle T_1^{(1)} g, g \right\rangle_1(\omega) \right| = |\lambda_1(\omega)|.$$ Continuing this process we obtain a sequence of Kaplansky–Hilbert submodules $\mathscr{H}_{k+1} = \mathscr{H}_k \ominus_1 \{\phi_k\}$, where $\phi_k \in \mathscr{H}_k$ are eigenfunctions of the PIO T_1 with $T_1\phi_k = \lambda_k \cdot \phi_k$. If $T_1^{(n)}$ is a zero operator for some $n \in \mathbb{N}$ then we obtain the finite system ∇_1 -orthonormal eigenfunctions $\phi_1(x,y), \phi_2(x,y), \dots, \phi_{n-1}(x,y)$ corresponding to the system of nonzero L_0 -eigenvalues $\lambda_1(\omega), \lambda_2(\omega), \dots, \lambda_{n-1}(\omega)$, such that $$|\lambda_1(\omega)| \geqslant |\lambda_2(\omega)| \geqslant \ldots \geqslant |\lambda_{n-1}(\omega)|$$ and $$|\lambda_k(\omega)| = \sup_{g \in \mathscr{H}_k, \|g\|_1 = \mathbf{e}} |\langle T_1^{(1)} g, g \rangle_1(\omega)|.$$ If $T_1^{(n)} \neq \theta$ for each $n \in \mathbb{N}$ then we obtain an infinite system ∇_1 -orthonormal eigenfunctions $\{\phi_k\}_{k=1}^{\infty}$ corresponding to the system of L_0 -eigenvalues $\lambda_k \neq \theta$. However, the equality $$T_1(\omega)\phi_k(x,\omega) = \lambda_k(\omega) \cdot \phi_k(x,\omega), \quad k \in \mathbb{N},$$ is correct for almost all $\omega \in \Omega_2$. It follows that $\lim_{k\to\infty} \lambda_k(\omega) = 0$ for almost all $\omega \in \Omega_2$, because $T_1(\omega)$ is a compact operator for almost all $\omega \in \Omega_2$. Let $f = T_1 h$, $h \in \mathcal{H}$ and $g = h - \sum_{k=1}^m \langle h, \phi_k \rangle_1 \cdot \phi_k$. Here m is the number of eigenfunctions of the system $\{\phi_k\}$ when the system $\{\phi_k\}$ is a finite set, and m is equal to arbitrary natural number otherwise. By the equality $$\langle g, \phi_k \rangle_1 = \theta, \quad k \in \{1, 2, \dots, m\}$$ we have $g \in \mathcal{H}_{m+1}$. Consequently, we have $$||T_1g||_1^2(\omega) \le ||T_1^{(m+1)}||^2(\omega) \cdot ||g||_1^2(\omega),$$ i. e., $$\left\| T_1 h - \sum_{k=1}^{m} \langle h, \phi_k \rangle_1 \cdot T_1 \phi_k \right\|_1^2 (\omega) \leqslant \left\| T_1^{(m+1)} \right\|^2 (\omega) \cdot \|g\|_1^2 (\omega). \tag{13}$$ We have $\langle h, \phi_k \rangle_1 \cdot T_1 \phi_k = \langle T_1 h, \phi_k \rangle_1 \cdot \phi_k$ and $\|g\|_1 \leqslant \|h\|_1$. Hence by the inequality (13) we obtain $$\left\| f - \sum_{k=1}^{m} \langle f, \phi_k \rangle_1 \cdot \phi_k \right\|_1^2(\omega) \leqslant \left\| T_1^{(m+1)} \right\|_1^2(\omega) \cdot \|h\|_1^2(\omega). \tag{14}$$ If the number of elements of the system $\{\phi_k\}$ is equal to m then $T_1^{(m+1)}=\theta$ and we have $$f = \sum_{k=1}^{m} \langle f, \phi_k \rangle_1 \cdot \phi_k.$$ If the sequence $\{\phi_k\}$ is infinite then from the inequality (14) it follows that $$\left\| f - \sum_{k=1}^{m} \langle f, \phi_k \rangle_1 \cdot \phi_k \right\|_1^2(\omega) \leqslant \lambda_{m+1}^2(\omega) \cdot \|h\|_1^2(\omega),$$ i. e., $$\theta \leqslant \|f\|_1^2(\omega) - \sum_{k=1}^m |\langle f, \phi_k \rangle_1(\omega)|^2 \leqslant \lambda_{m+1}^2(\omega) \cdot \|h\|_1^2(\omega).$$ Thus as $m \to \infty$, we get $$||f||_1^2(\omega) = (o) - \sum_{k=1}^{\infty} |\langle f, \phi_k \rangle_1(\omega)|^2. >$$ ### 5. Decomposition of the Partial Integral Operator T_1 in Series of ∇_1 -One-Dimensional Operators DEFINITION 5.1. If for an operator $A: \mathcal{H} \to \mathcal{H}$ there are ∇_1 -orthonormal functions $\{\phi_k\}_{k=1}^n \subset \mathcal{H}$ and some system of functions $\{g_k\}_{k=1}^n \subset \mathcal{H}$, such that $$Af = \sum_{k=1}^{n} \langle f.g_k \rangle_1 \cdot \phi_k, \quad f \in \mathcal{H}$$ then the operator A is called the ∇_1 -n-dimensional operator, here $\mathcal{H} = L_0[L_2(\Omega_1)]$. **Theorem 5.1.** For the PIO T_1 there is a system of ∇_1 -orthonormal functions $\{\phi_k(x,y)\}$ and a sequence of real $L_0(\Omega_2)$ -eigenvalues $\lambda_k(\omega)$ such that for all $h \in L_0[L_2(\Omega_1)]$ the following conditions hold: 1°. $h = h_0 + (bo) - \sum_{k=1}^{\infty} \langle h, \phi_k \rangle_1 \cdot \phi_k, \ h_0 \in Ker(T_1).$ 2°. $T_1h = (bo) - \sum_{k=1}^{\infty} \lambda_k \cdot \langle h, \phi_k \rangle_1 \cdot \phi_k$. 3° . $|\lambda_k(\omega)| \geqslant |\lambda_{k+1}(\omega)|, k \in \mathbb{N}$. 4° . (o)- $\lim_{k\to\infty} \lambda_k = \theta$. \triangleleft By Theorem 4.2 there are a system of ∇_1 -orthonormal functions $\{\phi_k(x,y)\}$ and a sequence of L_0 -eigenvalues $\lambda_k(\omega)$ such that $T\phi_k = \lambda_k \cdot \phi_k$ and for each $f = T_1 h$ we get the equality $$f = (bo)$$ - $\sum_{k=1}^{\infty} \langle f, \phi_k \rangle_1 \cdot \phi_k$, where $\langle f, \phi_k \rangle_1 = \lambda_k \cdot \langle h, \phi_k \rangle_1$. Thus, for all $h \in \mathcal{H}$ $$T_1 h = (bo) - \sum_{k=1}^{\infty} \lambda_k \cdot \langle h, \phi_k \rangle_1 \cdot \phi_k.$$ If we denote $h_0 = h - (bo) - \sum_{k=1}^{\infty} \langle h, \phi_k \rangle_1 \cdot \phi_k$, then $$h = h_0 + (bo) - \sum_{k=1}^{\infty} \langle h, \phi_k \rangle_1 \cdot \phi_k, \quad T_1 h_0 = \theta.$$ The properties 3° and 4° follows from the Theorem 4.2. Theorem 5.1 can also be proven by using Theorem 3.5 in the article of A. G. Kusraev [10]. \triangleright **Theorem 5.2.** For all positive functions $\varepsilon(\omega) \in L_0(\Omega_2)$, $\mu_2(\Omega_2 \setminus \text{supp}(\varepsilon)) = 0$ there exist a ∇_1 -finite dimensional operator $\mathscr{T}_1^{\varepsilon}$ on the Kaplansky–Hilbert module $L_0[L_2(\Omega_1)]$, such that $||T_1 - \mathscr{T}_1^{\varepsilon}||_1(\omega) < \varepsilon(\omega)$. \triangleleft By the Theorem 5.1 there is a system of ∇_1 -orthonormal functions $\{\phi_k(x,y)\}$ and a sequence of L_0 -eigenvalues $\lambda_k(\omega)$ for which the properties 1°-4° hold. We define the ∇_1 -finite dimensional operator $\mathscr{T}_1^{\varepsilon}$: $$\mathscr{T}_1^{\varepsilon} h = \sum_{k=1}^n \lambda_k \cdot \langle h, \phi_k \rangle_1 \cdot \phi_k.$$ It follows that $$||T_1h - \mathcal{J}_1^{\varepsilon}h||_1^2(\omega) \leqslant \lambda_{n+1}^2(\omega) \cdot \left\{ |\langle h, \phi_{k+1} \rangle_1(\omega)|^2 + |\langle h, \phi_{k+2} \rangle_1(\omega)|^2 + \ldots \right\} \leqslant \lambda_k^2(\omega) ||h||_1^2(\omega).$$ Hence, for $|\lambda_{n+1}(\omega)| < \varepsilon(\omega)$ we have $||T_1 - \mathcal{I}_1^{\varepsilon}||_1(\omega) < \varepsilon(\omega)$. \triangleright # 6. Decomposition of the Partial Integral Operator T_2 in Series of ∇_2 -One-Dimensional Operators We denote by $L_0[L_2(\Omega_2)]$ the set of equivalence classes of all complex measurable functions f(x,y) on $\Omega_1 \times \Omega_2$, which satisfied the condition: the integral $$\psi(x) = \int_{\Omega_2} |f(x,y)|^2 d\mu_2(y)$$ exist for almost all $x \in \Omega_1$ and $\psi \in L_0(\Omega_1)$. We define $L_0(\Omega_1)$ -valued inner product on $L_0[L_2(\Omega_2)]$ by $$\langle f, g \rangle_2 = \int_{\Omega_1} f(x, t) \overline{g(x, t)} \, d\mu_2(t).$$ For each $f \in L_0[L_2(\Omega_2)]$ we define L_0 -norm: $||f||_2(v) = \sqrt{\langle f, f \rangle_2(v)}$. Then $L_0[L_2(\Omega_2)]$ is a Banach-Kantorovich space over $L_0(\Omega_1)$. Consequently, the space $L_0[L_2(\Omega_2)]$ is a Kaplansky-Hilbert module over $L_0(\Omega_1)$ with the inner product $\langle \cdot, \cdot \rangle_2(v)$. Let T_2 be an operator in the Kaplansky-Hilbert module $L_0[L_2(\Omega_2)]$ over $L_0(\Omega_1)$ given by the formula $$(T_2 f)(x, y) = \int_{\Omega_2} k_2(x, t, y) f(x, t) d\mu_2(t).$$ (15) Here, $k_2(x, t, y)$ is measurable function on $\Omega_1 \times \Omega_2^2$. Assume that the kernel $k_2(x, s, y)$ of the integral operator T_2 satisfies the condition $$\int_{\Omega_2} \int_{\Omega_2} |k_2(x,t,y)|^2 d\mu_2(t) d\mu_2(y) \in L_0(\Omega_1).$$ Then, the operator T_2 is linear and $L_0(\Omega_1)$ -bounded operator on $L_0[L_2(\Omega_2)]$. If the kernel $k_2(x,s,y)$ satisfy of the condition $k_2(x,t,y)=k_2(x,y,t)$, then the operator T_2 is a self-adjoint operator on the Kaplansky-Hilbert module $L_0[L_2(\Omega_2)]$, i. e., $$\langle T_2 f, g \rangle_2 = \langle f, T_2 g \rangle_2.$$ A system $\{f_{\alpha}(x,y)\}\in L_0[L_2(\Omega_2)]$ is said ∇_2 -orthogonal system, if $\langle f_{\alpha},f_{\beta}\rangle_2=\theta,\,\alpha\neq\beta$. A ∇_2 orthogonal system $\{f_{\alpha}(x,y)\}\subset L_0[L_2(\Omega_2)]$ is said ∇_2 -orthonormal system, if $\langle f_{\alpha},f_{\alpha}\rangle_2=\mathbf{e}$. Note that, the PIO T_2 is cyclically compact on the Kaplansky-Hilbert module $L_0[L_2(\Omega_2)]$ [7]. **Theorem 6.1.** For the PIO T_2 there is a system of ∇_2 -orthonormal functions $\{\psi_k(x,y)\}$ and a sequence of real $L_0(\Omega_1)$ -eigenvalues $\zeta_k(v)$ such that, for all $h \in L_0[L_2(\Omega_2)]$ the following - 1°. $h = h_0 + (bo) \sum_{k=1}^{\infty} \langle h, \psi_k \rangle_1 \cdot \psi_k, h_0 \in Ker(T_2);$ 2°. $T_2 h = (bo) \sum_{k=1}^{\infty} \zeta_k \cdot \langle h, \psi_k \rangle_1 \cdot \psi_k, \text{ where}$ - 3° . $|\zeta_k(v)| \geqslant |\zeta_{k+1}(v)|, k \in \mathbb{N};$ - 4° . (o)- $\lim_{k\to\infty}\zeta_k=\theta$. #### References - 1. Appell, J., Kalitvin, A. S. and Zabrejko, P. P. Partial Integral Operators and Integro-Differential Equations, New York, Basel, 2000, 578 p. - 2. Eshkabilov, Yu. Kh. On a Discrete "Three-Particle" Schrodinger Operator in the Hubbard Model, Theor. Math. Phys., 2006, vol. 149, no. 2, pp. 1497–1511. DOI: 10.1007/s11232-006-0133-2. - 3. Eshkabilov, Yu. Kh. and Kucharov, R. R. Essential and Discrete Spectra of the Three-Particle Schrödinger Operator on a Lattice, Theor. Math. Phys., 2012, vol. 170, no. 3, pp. 341–353. DOI: 10.1007/s11232-012 - 0034 - 5. - 4. Eshkabilov, Yu. Kh. The Efimov Effect for a Model "Three-Particle" Discrete Schrödinger Operator, Theor. Math. Phys., 2010, vol. 164, no. 1, pp. 896–904. DOI: 10.1007/s11232-010-0071-x. - 5. Eshkabilov, Yu. Kh. Spectra of Partial Integral Operators with a Kernel of Three Variables, Central European J. Math., 2008, vol. 6, no. 1, pp. 149–157. DOI: 10.2478/s11533-008-0010-3. - 6. Kusraev, A. G. Dominated Operators, Dordrecht etc., Kluwer Academic Publishers, 2000, 445p. - 7. Kudaybergenov, K. K. ∇ -Fredholm Operators in Banach–Kantorovich Spaces, Methods Func. Anal. Topology, 2006, vol. 12, no. 3, pp. 234–242. - 8. Sarymsakov, T. A. Polupolya i teoriya veroyatnostej [Semifields and Probability Theory], Tashkent, Fan, 1980 (in Russian). - 9. Akhiezer, N. I. and Glazman, I. M. Teoriya linejnyh operatorov v gilbertovom prostranstve [Theory of Linear Operators in Hilbert Space], Moskva, Nauka, 1966, 544 p. (in Russian). - 10. Kusraev, A. G. Cyclically Compact Operators in Banach Spaces. Vladikavkaz Math. J., 2000, vol. 2, no. 1, pp. 10–23. Received January 18, 2021 Yusup Kh. Eshkabilov Karshi State University, 17 Kuchabag St., Karshi 180119, Uzbekistan, Professor E-mail: yusup62@mail.ru RAMZIDDIN R. KUCHAROV National University of Uzbekistan, 4 University St., Tashkent 100174, Uzbekistan, Associate Professor E-mail: ramz3364647@yahoo.com Владикавказский математический журнал 2021, Том 23, Выпуск 3, С. 80–90 ### ЧАСТИЧНО ИНТЕГРАЛЬНЫЕ ОПЕРАТОРЫ ТИПА ФРЕДГОЛЬМА В МОДУЛЕ КАПЛАНСКОГО — ГИЛЬБЕРТА НАД L_0 Эшкабилов Ю. Х.¹, Кучаров Ю. Х.² ¹ Каршинский государственный университет, Узбекистан, 180119, Карши, ул. Кучабаг, 17; ² Национальный университет Узбекистана, Узбекистан, 100174, Ташкент, ул. Университетская, 4 Е-mail: yusup62@mail.ru, ramz3364647@yahoo.com Посвящается 80-летию профессора Стефана Григорьевича Самко Аннотация. В статье изучаются некоторые характеристические свойства самосопряженных частично интегральных операторов типа Фредгольма в модуле Капланского — Гильберта $L_0\left[L_2\left(\Omega_1\right)\right]$ над $L_0\left(\Omega_2\right)$. Используется математический инструментарий из теории модулей Капланского — Гильберта. В модуле Капланского — Гильберта $L_0\left[L_2\left(\Omega_1\right)\right]$ над $L_0\left(\Omega_2\right)$ рассматриваются частично интегральные операторы типа Фредгольма $T_1\left(\Omega_1$ и Ω_2 — замкнутые ограниченные множества в \mathbb{R}^{ν_1} и \mathbb{R}^{ν_2} , $\nu_1, \nu_2 \in \mathbb{N}$ соответственно). В работе доказано существование $L_0\left(\Omega_2\right)$ -собственных значений, отличных от нуля для любого самосопряженного частично интегрального оператора типа Фредгольма T_1 ; более того, показано существование конечного или счетного числа вещественных $L_0\left(\Omega_2\right)$ -собственных значений. В последнем случае, последовательности $L_0\left(\Omega_2\right)$ -собственных значений порядково сходятся к нулевой функции. Установлена также теорема о разложимости оператора T_1 в ряд по ∇_1 одномерным операторам. **Ключевые слова:** частично интегральный оператор, модуль Капланского — Гильберта, L_0 -собственное значение. Mathematical Subject Classification (2010): 45A05, 47A10, 47G10, 45P05, 45B05, 45C05. **Образец цитирования:** Eshkabilov, Yu. Kh. and Kucharov, R. R. Partial Integral Operators of Fredholm Type on Kaplansky–Hilbert Module over L_0 // Владикавк. мат. журн.—2021.—Т. 23, № 3.— С. 80–90 (in English). DOI: 10.46698/w5172-0182-0041-c.