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A NOTE ON SURJECTIVE POLYNOMIAL OPERATORS!

M. Saburov

A linear Markov chain is a discrete time stochastic process whose transitions depend only on the current
state of the process. A nonlinear Markov chain is a discrete time stochastic process whose transitions
may depend on both the current state and the current distribution of the process. These processes arise
naturally in the study of the limit behavior of a large number of weakly interacting Markov processes.
The nonlinear Markov processes were introduced by McKean and have been extensively studied in the
context of nonlinear Chapman—Kolmogorov equations as well as nonlinear Fokker—Planck equations. The
nonlinear Markov chain over a finite state space can be identified by a continuous mapping (a nonlinear
Markov operator) defined on a set of all probability distributions (which is a simplex) of the finite state
space and by a family of transition matrices depending on occupation probability distributions of states.
Particularly, a linear Markov operator is a linear operator associated with a square stochastic matrix. It is
well-known that a linear Markov operator is a surjection of the simplex if and only if it is a bijection. The
similar problem was open for a nonlinear Markov operator associated with a stochastic hyper-matrix. We
solve it in this paper. Namely, we show that a nonlinear Markov operator associated with a stochastic
hyper-matrix is a surjection of the simplex if and only if it is a permutation of the Lotka—Volterra operator.
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1. Introduction

Let L,, := {1,--- ,m} be a finite set, @ := I,;, \ @ be a complement of a subset o C I,
and |a| be the number of its elements. Suppose that R™ is equipped with the [j-norm
1x[l1 :== >4 |xk| where x = (21, ,x,) € R™ and {e; }c1,, stands for the standard basis.

We say that x > 0 (respectively x > 0) if z; > 0 (respectively z; > 0) for all i € I,,,. Let
Sm~l = {x € R™ : |x|l; = 1,x > 0} be the (m — 1)-dimensional standard simplex. An
element of the simplex S™~! is called a stochastic vector. For a stochastic vector x € S™~1,
we set supp(x) = {i € L, : &; > 0},null(x) = {i € I,, : ; = 0}. We define a face
Iy = conv{e;}icq of the simplex S™~! where a C I, and conv(A) is the convex hull of a
set A. LetintT'y, = {x € 'y, : supp(x) = a} and 'y, = I', \int I',, be respectively the relative
interior and boundary of the face I',.

Recall that a square matrix P’ = (p;;){_; is called non-negative, written P > 0, if p;e > 0
forall: € I,,,. A square matrix P = (pij)%-:l is called stochastic if each row pje = (Pi1,- - - Pim)
is a stochastic vector for all i € I,,,. Let £ : S™ 1 — S™~! be a linear operator (a Markov
operator) associated with a square stochastic matrix P = (pl-j)?szl, i.e.,

Z(x)=xP= Z TiDie-
i=1
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It is easy to see that the linear operator . : S™~1 — S™~1 is a surjection if and only if it
is a bijection. Indeed, the straightforward calculation shows that if .Z : S™~1 — 8™~ ! s a
surjection then for each i there exists j such that £ ~!(e;) = e; where £ !(e;) is a preimage
of the vertex e; of the simplex S™~!. Consequently, surjective linear operators of the simplex
are only permutation operators.

Recently, the similar problem for a quadratic operator (a nonlinear Markov operator [6])
associated with a cubic stochastic matrix was solved in the paper [5]. In general, the convexity
of the quadratic operators is strongly tied up with the nonlinear optimization problems [1, 2,
4, 7] and is not an easy problem [8]. In this paper, we provide a criterion for surjectivity of
polynomial operators associated with stochastic hyper-matrices.

2. Polynomial Operators Associated with Stochastic Hyper-Matrices

Let & = (pi,..i,)i}. i,—1 be a k-order m-dimensional hyper-matrix. We define the
following vectors and matrices

m
pil...ik,1. = (pil...ikflla s 7pi1...ik,1m)a ]P)il...l'k,QOO - (pil...ik_gjl)jlzla

for any i1, ...,ik—1 € L. In what follows, we denote 4[;.;; := 41 ... % for index.

A hyper-matrix & = (p;,..i,){7 ;-1 18 called non-negative and written & > 0 if
Pij_ye = 0 for all i1,...,ix_1 € L. A hyper-matrix & = (pulk);?zk:l is called stochastic
if each vector Pijyi_yje 1S stochastic for all 41,...,ix_1 € I,,.

We define a polynomial operator B : 8™~ — S~ associated with k-order m-dimensional
stochastic hyper-matrix & = (pzlzk)?f

P(x) = Z T Z Tiy -+ T Pifyp_q)® (1)

;. —1 as follows
o lk—

for any x € 8™, It is easy to check that

PB(x) = xPx (2)
where
m m
m
Py = Z Z Lig « xik—z]pi[l;k—z]“ = (pjl(x))j’lzl
’i1:1 ik_gil

is a square stochastic matrix for any x € S™~!. Due to the matrix form (2), the polynomial

operator P : S~ — 8™~ agsociated with k-order m-dimensional stochastic hyper-matrix &2

is a nonlinear Markov operator (see |6]). Unlike the classical Markov chain, the nonlinear

Markov chain is a stochastic process whose transition matrix Py may depend not only on the

current state of the process but also on the current distribution x of the process (see [3]).
Throughout this paper, without loss of generality, we assume that

pl’1...ik,1. = piﬂ(1>...iﬂ(k71).
for any 41,...,7,_1 € I;, and any permutation 7 of the set I,_;. We also assume that m > k.
We need the following auxiliary results.

Proposition 2.1 [6]. The following statements hold:

(i) supp(P(x)) = U Supp(pi[l:k—l].);
i[1:1—1)E€SUPP(X)
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(ZZ) null(‘B(X)) = n nuu(pi[lzk_l].);
i[1:5— 1) €ESUPP(X)
(i1i) P(int o) CintT'g where = U supp(Piy,_yj0);
U1:k—1]EQ

(iv) P(int Ty,) C int Tg if and only if P(xV) € int Ty for some x(0) € int T,.

An absorbing state played an important role in the theory of the classical Markov chains.
Analogously, the concept of absorbing sets for nonlinear Markov chains was introduced in the
paper [6].

DEFINITION 2.1 [6]. A subset o C I,,, is called absorbing if one has that

o= ﬂ Illﬂl(pi[l:k,l].)-

U1:p—1]€Q

It is clear that o C I, is an absorbing set if and only if

o = U Supp(pi[ljk,u.)’

i1:k—1) €O

The following result presents an insight of an absorbing set.

Proposition 2.2 |6]. The following statements are equivalent:

(1) A subset a C I, is absorbing;

(i) One has that P(intT,) C int T'y;

(7i1) One has that B (X(O)) € int ', for some x(0 € int T..

Proposition 2.3. If any subset o C I,,, with |o| < k — 1 is absorbing then so are all
subsets of 1,,.

< Suppose that any subset @ C I, with |a] < k& — 1 is absorbing. It means that
supp(pi[ljkiu.) C o for any i1, ,ig—1 € . In particular, the sets o® = {i9,--- ,4;_,} and
B° = {j°} are absorbing for the given indices i, -- ,i}_;,j° € I, (the repetition of indices is
allowed). We then obtain that supp(pje...jes) = {j°} and supp(pis...io_¢) C {i7, - i5_1} = a°
for any given indices if,--- ,iy_;,7° € I, (the repetition of indeces is allowed). Hence, for
any 3 C I, one has that

U swp(@iy,_ye) = | supp(pjje) U | supp(pi,_ye) = 8.
if1k_1)€8 jeB i iy
It means that 3 is an absorbing subset. This completes the proof. >
Lemma 2.1. If any subset o C I,,, with || < k — 1 is absorbing then the polynomial
operator B : S~ — 8™~ js a surjection.
<1 Due to Propositions 2.2 and 2.3, the polynomial operator 9 : 8™~ — S~ maps each
face of the simplex 8™~ ! into itself. It is well-known in algebraic topology that any continuous

mapping which maps each face of the simplex S™ ! into itself is a surjection of the simplex
S™~! (see Lemma 1, [5]). This completes the proof. >

3. Surjective Polynomial Operators vs Lotka—Volterra Operators

We recall a definition of Lotka—Volterra operators (see [5]).

DEFINITION 3.1. A polynomial operator 8 : S”~! — 8™~ is called the Lotka—Volterra
operator if supp(pi[lzk_l].) C {i1,...,ig—1} for any iy,...,ig_1 € L.
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We provide a criterion for the Lotka—Volterra operator in terms of absorbing sets.

Lemma 3.1. The following statements are equivalent:

(i) The polynomial operator B : S™~1 — S™~! is the Lotka—Volterra operator;

(74) Any subset o C I,,, with || < k — 1 is absorbing;

(ii7) One has that B~!(int T',) = int T, for any subset a C I, with |a] < k — 1.

REMARK 3.1. We always assume int I'y, := T, for the subset a C I,,, with |a| = 1.

< We prove the following implications (i) = (i7) = (iit) = (7).

(i) = (ii) : Let B : S™ 1 — S™1 be the LotkaVolterra operator. We then have that
SUpP (Pijy_ye) C {15, ig—1} for any i1, ..., 451 € L, (the repetition of indices is allowed).
Particularly, supp(p;...je) = {j} for any j € I,,,. Hence, for any o C I,;, with || < k — 1 one
has that

U swp(@iy,_ye) = [ sup(@s.jo) U | supp(piy,_je) = o

iU1:p—1] € JEa (=

It means that « is an absorbing subset.

(73) = (i73) : Suppose that any subset o C I,,, with || < k—1 is absorbing. We then obtain
that supp(pi[ljkiu.) C « for any iy,...,i,—1 € «a. Particularly, since the subset a® = {j} is
absorbing, we have that supp(p;..je) = {j} for any j € I,,,. It follows from Proposition 2.2, (i)
that PB(int T,) C int T, for any absorbing subset a C I,,,. Moreover, if 8~ (int T'y) \int T, #
@ then there exists y € S™! with B := supp(y) such that 8\ a # @ and B(y) € intT,.
Then it follows from Proposition 2.1, (iv) that 9B(int I'g) C int T'. Since P : S~ — 8™~ s
continuous, we have that P(I'g) = P(int I'g) C int 'y = I',. Particularly, B(e;) = p;..jo € '
(or equivalently supp(pj...je) C ) for j € 8\ a. However, this contradicts to the fact that the
singleton {j}, j € B\ a is an absorbing set (or equivalently supp(p;j...je) = {j}). Therefore,
we have that B! (int T,) = int T,

(iii) = (i) : Suppose that P~!(int T',) = int T, for any subset o C I,, with |a| < k — 1.
We then obtain from Proposition 2.1, (iii) that

U Supp(pi[l:k-l}') = Q.

i1k—1]€Q
Particularly, we get that supp(pi[l:kil].) C « for any ¢1,...,ix_1 € . Let us now fix indices
i$,...,ip_y € L, (the repetition of indices is allowed). Then, for the set o® = {i{,...,iy_;}
we have that supp(pig...iz_l.) C {i7,...,i_4} = a°. Since the indices i,...,i;_; € I, are

arbitrary chosen, the last inclusion means that ¢ : 8”1 — S™~! is the LotkaVolterra
operator. This completes the proof. >

We are now ready to formulate the main result of the paper.

Theorem 3.1. Let B : S ! — 8™ be a polynomial operator. Then the following
statements are equivalent:

(i) The polynomial operator B : S~ — S™~! is a surjection;

(i1) There exists a permutation m of the set I,, such that for any 1 < | < k — 1 and
for any iy,...,4 € I, one has that S3~!(int Peil---eil) = int I'e
conv{e; ,...,e;};

(#i1) There exists a permutation matrix II such that I1o*p is the Lotka—Volterra operator.

w(iny-eniy Where ey e, =

REMARK 3.2. We always assume that intI'e, := {e;} for any i € I,,.
< We prove the following implications (i) = (i) = (iii) = (7).
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(i) = (ii) : Suppose that the polynomial operator P : S™~! — Sm~! i5 a surjection.
Let B~!(e;) be a preimage (which is nonempty) of the vertex e; for j € I,,. Obviously,
if x € P~1(e;) with supp(x) = « then I', C P~(e;) (see Proposition 2.1, (iv)). Hence,
PB~!(e;) is a face or a union of faces of the simplex S™! for any j € I,. Consequently,
the set {P~L(e1), -+, P (em)} consists of (at least) m mutually disjoint faces of the simplex
S™~1. This is possible if and only if there exists a permutation 7 of the set I,, such that
2]3_1(ej) = ey(;) for any j € I,. Let us now show P~ (int Fei1~~~eil) = int Few(il)---ew(il) for any
i1,...,1 € L by means of mathematical induction with respect to [ where 1 <1 < k — 1.
Obviously, if y € P~ (int Feil---eil) with supp(y) = B then intT'g C P~ (int Feil---eil) and
'y C ‘B_l(Feilmeil) (see Proposition 2.1, (iv)). Moreover, if 8\ {7(i1),...,7())} # @
(or equivalently w=1(3) \ {i1,..., i} # @) then e,y € &B*l(lﬂeilmeil) for some j €
7 1(B) \ {i1,...,i}. However, it contradicts to er(j) = B~!(e;). Therefore, we must have
that 5 C {m(i1),...,m(i;)}. On the other hand, due to mathematical induction, we also have
that {m(i1),...,7(i1)} \ B = @. Hence, we get that 5 = {m(i1),...,m(4;)}. Since the point
y € P~ (int Peil---eil) is arbitrary chosen, we obtain that 3! (int Feil---eil) C int Pew(il)---ew(il)'
i-enty)  C P~ (int Feil---eil) follows from Proposition 2.1, (iv).
Consequently, B~ (int Feil---eil) = int Feml) ) for any i1,...,3 €, and 1 <I <k —1.

(ii) = (iii) : Suppose that there exists a permutation 7 such that 3~ (int Le, .e;) =
int Few(il)mewm) for any 4y,...,4 € I, and 1 < [ < k — 1. Particularly, we have that
B l(e;) = er(j) for any j € I, We now define a permutation matrix II (associated with
the permutation ) as follows I(e;) := e,y for any j € I,,. Obviously, we obtain that

The inclusion int Few(

...eﬁ(il

IT(P(int reil,,,eil)) =int Te; e,y Vity-os i1 €Ly, VISIS K- L

Due to Lemma 3.1, the polynomial operator Il o *J3 is the Lotka—Volterra operator.

(791) = (i) : Suppose that there exists a permutation matrix II such that P := IT o ‘P is
the Lotka—Volterra operator. Due to Lemmas 2.1 and 3.1, the Lotka—Volterra operator Py is
a surjection and so is the polynomial operator 98 = II~! o Pyy. This completes the proof. >
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SAMEYAHUE O CIOPBEKTUBHBIX I[TOJINMHOMUMAJIBHBIX OITEPATOPAX

Cabypor M.

Jlumeiinas mens MapkoBa SBIIsI€TCS CIy9IalHBIM MIPOIECCOM C JUCKPETHBIMU COCTOSHUSIMHU, TT€PEXOIbI KO-
TOPOTO 3aBUCAT TOJILKO OT TEKYIIEro COCTOsSHWS Tportecca. Hemmneinas mens MapkoBa — ciydaiiHbril
TIPOIIECC C AUCKPETHBIMU COCTOTHUAMH, TTEPEX0abl KOTOPOTO MOTYT 3aBUCETh KaK OT TEKYIIEro COCTOTHUS,
TaK U TEKYIIEro PaCIpe/IesIeHus ITPOIECCa. DTHU IIPOIECCHl eCTECTBEHHBIM 00Pa30M BO3HUKAIOT IIPU U3y Ue-
HUU IPEeTHHOTO TOBEIeHVs OOJIBITOTO KOJIMYECTBA C/1ab0 B3aNMOJEHCTBYIOMNX MAPKOBCKUX TTPOIECCOB.
Henuneiinble MapKOBCKME TIPOIECCHI OBLIN BBEeAeHB MaKKMHOM U NIUPOKO M3YYAJINCh B KOHTEKCTE HEJIH-
HeltHbIX ypasHennit Janvana — Kosamoroposa, a takke HesmHeiHbx ypasuenuit Poxkepa — Ilianka.
Henuneiinas mens MapkoBa Hal KOHEYHBIM TTPOCTPAHCTBOM COCTOSTHUN MOYKET OBITH OMpEIeIeHa Hermpe-
PBIBHBIM OTOGparkenneM (HEJMHEHHBIM OrrepaTopoM MapkoBa), OpeeIseMbIM Ha MHOKECTBE BCEX BEPO-
SATHOCTHBIX PACHpPeeseHni (ABAA0MEMCa CAMIIIIEKCOM) KOHEIHOTO IIPOCTPAHCTBA COCTOTHAN CeMeRCTBOM
MaTPUI] TIEPEX0/IA, 3aBUCAIINX OT PACITPEIe/IeHNsT BEPOATHOCTEH 3aHATHSA cocTosHuit. B wacTHOCTH, JTH-
HelHbIN oniepaTop MapKoBa ABJIsI€TCs JIUHEHHBIM OIIEPATOPOM, CBA3AHHBIM C KBaPATHOM CTOXaCTHYIECKON
marpuieil. Xopoiro n3BecTHO, UTO JuHEHHBbIN omepaTop MapkoBa OymeT CIOpbEKImedl CHMILIEKCa B TOM
U TOJIKO B TOM CJIydae, KOTa OH sIBJIfeTCs Omekimeii. AHajoruaHas 3a1a49a 119 HeJIMHEHOTO OTepaTopa
MapkoBa, CBA3aHHOIO CO CTOXAaCTUYECKON rUrep-MaTpuIieii, ocraBajaach oTKpbiToit. OHa pemena B JaHHOM
cTaTrbe, a UMEHHO, II0OKA3aHO, YTO HeJHMHEHHbBIN orepaTop MapKoB, CBA3aHHBIN CO CTOXaCTUYECKON TUIep-
MaTpHUIEH, ABIAETCA CIOPBEKIINEll CUMILIEKCA, eCJIN 1 TOJIBKO €CJIN OH SABJISETCHA IIePeCTAaHOBKOM OIlepaTop
Jlorku — BousbTeppa.

KirrogeBble ciioBa: CTOXaCTHYeCKad THUIIEP-MATPUIIA, ITOJUHOMHUAJIBHEIN ONEepaTop, omeparop JIoTkm —
BosbTeppa.



