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of elements of a relatively uniformly complete vector lattice can naturally be defined if the positively
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1. Introduction

For any finite sequence (x1, . . . , xN ) (N ∈ N) in a relatively uniformly complete vector
lattice the expression of the form ϕ̂(x1, . . . , xN ) can be correctly defined provided that ϕ is
a positively homogeneous continuous function on RN . The study of such expressions, called
homogeneous functional calculus, provides a useful tool in a variety of areas, see [4, 9, 10, 14,
15, 16, 21]. At the same time it is of importance in certain problems to deal with ϕ̂(x1, . . . , xN )
even if ϕ is defined on a conic subset of RN [2, 16, 17]. The first aim of this paper is to extend
homogeneous functional calculus on uniformly complete vector lattices.

Let H be a linear (or semilinear) subset of a vector lattice E. The support set ∂Hx of
x ∈ E with respect to H is the set of all H-minorants of x: ∂Hx := {h ∈ H : h 6 x}. The
H-convex hull of x ∈ E is defined by coH x := sup{h ∈ H : h ∈ ∂Hx}. An element x is called
H-convex (abstract convex with respect to H) if coH x = x. Now the problem is to examine
abstract convex elements, that is elements which can be represented as upper envelopes of
subsets of a given set H of elementary elements. (For this abstract convexity see [13, 20]).
The second aim of the paper is the description of H-convex elements in E in the event that
H is the linear hull of a finite collection {x1, . . . , xN} ⊂ E of a vector lattice E. It turns
out that under some conditions an element in E is H-convex if and only if it is of the form
ϕ̂(x1, . . . , xN ) for some lower semicontinuous sublinear function ϕ.

Section 2 collects some auxiliary results. In Section 3 the extended homogeneous functional
calculus is defined. It is shown that the expression ϕ̂(x1, . . . , xN ) can naturally be defined
in any relatively uniformly complete vector lattice if a positively homogeneous function ϕ
is defined on some conic set dom(ϕ) ⊂ RN and is continuous on some closed subcone of
dom(ϕ). Section 4 contains some examples of computing ϕ̂(u1, . . . , uN ) whenever u1, . . . , uN
are continuous or measurable vector-valued functions, or ϕ is a Kobb–Duglas type function
and ui := b(xi, yi) (i = 1, . . . , N) for some lattice bimorphism b. In Section 5 Minkowski
duality is transplanted to vector lattice by means of extended functional calculus.
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There are different ways to define homogeneous functional calculus on vector lattices
[3, 9, 14, 18]. We follow the approach of G. Buskes, B. de Pagter, and A. van Rooij [3] going
back to G. Ya. Lozanovskĭı [18]. Theorem 2.1 below see in [3, 10, 14, 21]. For the theory of
vector lattices and positive operators we refer to the books [1] and [10]. All vector lattices in
this paper are real and Archimedean.

2. Auxiliary results

Denote by H (RN ) the vector lattice of all continuous functions ϕ : RN → R which are
positively homogeneous (≡ ϕ(λt) = λϕ(t) for λ > 0 and t ∈ RN ). Let dtk stands for the kth
coordinate function on RN , i. e. dtk : (t1, . . . , tN ) 7→ tk.

2.1. Theorem. Let E be a relatively uniformly complete vector lattice. For any x :=
(x1, . . . , xN ) ∈ E

N there exists a unique lattice homomorphism

x̂ : ϕ 7→ x̂(ϕ) := ϕ̂(x1, . . . , xN )
(
ϕ ∈ H (RN )

)

of H (RN ) into E with x̂(dtk) = xk (k := 1, . . . , N).

If the vector lattice E is universally σ-complete (≡ Dedekind σ-complete and laterally
σ-complete) and has an order unit, then Borel functional calculus is also available on E.
Let B(RN ) denotes the vector lattice of all Borel measurable functions ϕ : RN → R. The
following result can be found in [10, Theorem 8.2.14].

2.2. Theorem. Let E be a universally σ-complete vector lattice with a fixed weak order
unit

�
. For any x := (x1, . . . , xN ) ∈ EN there exists a unique sequentially order continuous

lattice homomorphism

x̂ : ϕ 7→ x̂(ϕ) := ϕ̂(x1, . . . , xN )
(
ϕ ∈ B(RN )

)

of B(RN ) into E such that x̂(1RN ) =
�

and x̂(dtk) = xk (k := 1, . . . , N).

Let HBor(RN ) denote the vector sublattice of B(RN ) consisting of all positively
homogeneous Borel functions ϕ : RN → R.

2.3. Theorem. Let E be a universally σ-complete vector lattice with an order unit.
For any x̂ := (x1, . . . , xn) ∈ EN there exists a unique sequentially order continuous lattice
homomorphism

x̂ : ϕ 7→ x̂(ϕ) = ϕ̂(x1, . . . , xN )
(
ϕ ∈ HBor(RN )

)

of HBor(RN ) into E such that x̂(dtk) = xk (k := 1, . . . , N).

C Fix an order unit
�

in E and take x̂ as in Theorem 2.2. Since HBor(RN ) is an order
σ-closed vector sublattice of B(RN ), the restriction of x̂ onto HBor(RN ) is also an order σ-
continuous lattice homomorphism. If h : HBor(RN )→ E is another order σ-continuous lattice
homomorphism with h(dtk) = x̂(dtk) (k := 1, . . . , N), then h and x̂(·) coincide on H (RN ) by
Theorem 2.1. Afterwards, we infer that h and x̂(·) coincide on the whole HBor(RN ) due to
order σ-continuity. B

3. Functional calculus

In this section we define extended homogeneous functional calculus on relatively uniformly
complete vector lattices. Everywhere below x := (x1, . . . , xN ) ∈ E

N .

3.1. Consider a finite collection x1, . . . , xN ∈ E and a vector sublattice L ⊂ E. Denote by
〈x1, . . . , xN 〉 and Hom(L) respectively the vector sublattice of E generated by {x1, . . . , xN}
and the set of all R-valued lattice homomorphisms on L. Put

[x] := [x1, . . . , xN ] :=
{
(ω(x1), . . . , ω(xN )) ∈ RN : ω ∈ Hom(〈x1, . . . , xN 〉)

}
.
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Let e := |x1| + . . . + |xN | and Ω:= {ω ∈ Hom(〈x1, . . . , xN 〉) : ω(e) = 1}. Then e is a strong
order unit in 〈x1, . . . , xN 〉 and Ω separates the points of 〈x1, . . . , xN 〉. Moreover, Ω may be
endowed with a compact Hausdorff topology so that the functions x̂k : Ω → R defined
by x̂k(ω) := ω(xk) (k := 1, . . . , N) are continuous and x 7→ x̂ is a lattice isomorphism of
〈x1, . . . , xN 〉 into C(Ω). Put

Ω(x1, . . . , xN ) :=
{
(ω(x1), . . . , ω(xN )) ∈ RN : ω ∈ Ω

}
,

and observe that [x1, . . . , xN ] := cone(Ω(x1, . . . , xN )), where cone(A) is the conic hull of A
defined as

⋃
{λA : 0 6 λ ∈ R}. Evidently, Ω(x1, . . . , xN ) is a compact subset of RN , since

it is the image of the compact set Ω under the continuous map ω 7→ (x̂1(ω), . . . , x̂N (ω)).
Therefore, [x1, . . . , xN ] is a compactly generated conic set in RN . (The conic set [x1, . . . , xN ]
is closed if 0 /∈ Ω(x1, . . . , xN ).) A set C ⊂ RN is called conic if λC ⊂ C for all λ > 0 while a
convex conic set is referred to as a cone. The reasoning similar to [3, Lemma 3.3] shows that
[x1, . . . , xN ] is uniquely determined by any point separating subset Ω0 of Hom(〈x1, . . . , xN 〉).
Indeed, if Ω′0 := {ω(e)

−1ω : 0 6= ω ∈ Ω0}, then Ω′0 is a dense subset of Ω and [x1, . . . , xN ] =
cone

(
cl(Ω′0(x1, . . . , xN ))

)
, where Ω′0(x1, . . . , xN ) is the set of all (ω(x1), . . . , ω(xN )) ∈ R with

ω ∈ Ω′0.

3.2. For a conic set C in RN denote by Ĉ ⊂ EN the set of all x := (x1, . . . , xN ) ∈ E
N with

[ x ] ⊂ C. Consider a conic set K ⊂ C. Let H (C;K) denotes the vector lattice of all positively
homogeneous functions ϕ : C → R with continuous restriction to K. Fix (x1, . . . , xN ) ∈ Ĉ and
take ϕ ∈ H (C; [ x ]). We say that ϕ̂(x1, . . . , xN ) exists or is well defined in E and write y =
x̂(ϕ) = ϕ̂(x1, . . . , xN ) if there is an element y ∈ E such that ω(y) = ϕ(ω(x1), . . . , ω(xN )) for
every ω ∈ Hom(〈x1, . . . , xN , y〉). This definition is correct, since for any given (x1, . . . , xN ) ∈ Ĉ
and ϕ ∈ H (C; [ x ]) there exists at most one y ∈ E such that y = ϕ̂(x1, . . . , xN ). It is
immediate from the definition that ϕ̂(λ1x, . . . , λNx) is well defined for any (λ1, . . . , λN ) ∈ C
and ϕ̂(λ1x, . . . , λNx) = ϕ̂(λ1, . . . , λN )x whenever 0 6 x ∈ E. The following proposition can
be proved as [3, Lemma 3.3].

Assume that L is a vector sublattice of E containing {x1, . . . , xN , y} and ϕ ∈
H (C; [x1, . . . , xN ]). If ω(y) = ϕ(ω(x1), . . . , ω(xN )) (ω ∈ Ω0) for some point separating set
Ω0 of R-valued lattice homomorphisms on L, then y = ϕ̂(x1, . . . , xN ).

3.3. Theorem. Let E be a relatively uniformly complete vector lattice and x ∈ EN ,
x = (x1, . . . , xN ). Assume that C ⊂ RN is a conic set and [ x ] ⊂ C. Then x̂(ϕ) := ϕ̂(x1, . . . , xN )
exists for every ϕ ∈ H (C; [x ]) and the mapping

x̂ : ϕ 7→ x̂(ϕ) = ϕ̂(x1, . . . , xN )
(
ϕ ∈ H (C; [ x ])

)

is a unique lattice homomorphism from H (C; [ x ]) into E with d̂tj(x1, . . . , xN ) = xj for
j := 1, . . . , N .

C Let H ([ x ]) denotes the vector lattice of all positively homogeneous continuous functions
defined on [ x ]. Then H ([ x ]) is isomorphic to C(Q), where Q := [ x ] ∩ S and S := {s ∈
RN : ‖s‖ := max{|s1|, . . . , |sN |} = 1}. Much the same reasoning as in [3, Proposition 3.6,
Theorem 3.7] shows the existence of a unique lattice homomorphism h from H ([ x ]) into E
such that d̂tj(x1, . . . , xN ) = xj (j := 1, . . . , N). Denote by ρ the restriction operator ϕ 7→ ϕ|[ x ](
ϕ ∈ H (C; [ x ])

)
. Then ρ ◦ h is the required lattice homomorphism. B

Observe that if ϕ,ψ ∈ H (C; [ x ]) and ϕ(t) 6 ψ(t) for all t ∈ [ x ], then ϕ̂(x1, . . . , xN ) 6

ψ̂(x1, . . . , xN ). Evidently, |ϕ(t)| 6 |||ϕ||| · ‖t‖ for all t ∈ [ x ] with |||ϕ||| := sup{ϕ(t) : t ∈ Q} and
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hence
|ϕ̂(x1, . . . , xN )| 6 |||ϕ||| (|x1| ∨ · · · ∨ |xN |) .

In particular, the kernel ker( x̂ ) of x̂ consists of all ϕ ∈ H (C; [ x ]) vanishing on [ x ].

3.4. LetK,M , N ∈ N and consider two conic sets C ⊂ RN andD ⊂ RM . Let x1, . . . , xN ∈
E, x := (x1, . . . , xN ), [x] ⊂ C, ϕ1, . . . , ϕM ∈ H (C; [ x ]), and denote ϕ := (ϕ1, . . . , ϕM ) and
y := (y1, . . . , yN ) with yk= ϕ̂k(x1, . . . , xN ) (k := 1, . . . ,M). Suppose that [ y ] ⊂ D, ϕ(C) ⊂ D,
and ϕ([ x ]) ⊂ [ y ]. If ψ := (ψ1, . . . , ψK) with ψ1, . . . , ψK ∈H (D; [ y ]), then ψ1◦ϕ, . . . , ψK◦ϕ ∈
H (C; [ x ]). Moreover, ϕ̂(x) := (ϕ̂1(x), . . . , ϕ̂M (x)) ∈ EM , ψ̂(y) := (ψ̂1(y), . . . , ψ̂K(y)) ∈ EK ,

and ψ̂ ◦ ϕ(x) := (ψ̂1 ◦ ϕ(x), . . . , ψ̂K ◦ ϕ(x)) ∈ E
K are well defined and

̂(ψ ◦ ϕ)(x) = ψ̂(ϕ̂(x)).

3.5. Theorem. Let C and K are conic sets in RN with K closed and K ⊂ C and let
ϕ ∈ H (C;K). Then for every ε > 0 there exists a number Rε > 0 such that

|ϕ̂(x + y)− ϕ̂(x)| 6 ε|||x|||+Rε|||y|||

for any finite collections x = (x1, . . . , xN ) ∈ EN and y = (y1, . . . , yN ) ∈ EN , provided that
x, y ∈ K̂, x + y ∈ K̂ and |||(u1, . . . , uN )||| stands for |u1| ∨ · · · ∨ |uN |.

C The proof is a duly modification of arguments from [4, Theorem 7]. Denote K× :=
{(s, t) ∈ K×K : s+ t ∈ K} and define A as the set of all (s, t) ∈ K× with max{‖s‖, ‖t‖} = 1
and τ(s, t) := |ϕ(s+ t)−ϕ(s)| > ε‖s‖, where ‖s‖ := max{|s1|, . . . , |sN |}. Then A is a compact
subset of K×K and (s, t) 7→ (τ(s, t)− ε‖s‖)/‖t‖ is a continuous function on A, since ‖t‖ 6= 0
for (s, t) ∈ A. Therefore,

Rε := sup

{
τ(s, t)− ε‖s‖

‖t‖
: (s, t) ∈ A

}
<∞.

Hence τ(s, t) 6 ε‖s‖ + Rε‖t‖ =: σ(s, t) for all (s, t) ∈ K×. Evidently, τ ∈ H (C×,K×),
σ ∈ H (RN × RN ), and τ 6 σ on K×. It remains to observe that (x, y) ∈ K̂× and apply 3.3
and the desired inequality follows. B

3.6. Proposition. Let E and F be uniformly complete vector lattices, E0 a uniformly
closed sublattice of E, and h : E0 → F a lattice homomorphism. Let C be a conic set in RN ,
x1, . . . , xN ∈ E0, and ϕ ∈ H (C; [x1, . . . , xN ]). Then [h(x1), . . . , h(xN )] ⊂ [x1, . . . , xN ] and

h(ϕ̂(x1, . . . , xN )) = ϕ̂(h(x1), . . . , h(xN )).

In particular, if h is the inclusion map E ↪→ F and x1, . . . , xN ∈ E, then the element
ϕ̂(x1, . . . , xN ) relative to F is contained in E and its meaning relative to E is the same.

C Put yi := h(xi) (i := 1, . . . , N). If ω ∈ Hom(〈y1, . . . , yN 〉), then ω̄ := ω ◦ h belongs to
Hom(〈x1, . . . , xN 〉) and (ω(y1), . . . , ω(yN )) = (ω̄(x1), . . . , ω̄(xN )) ∈ [x1, . . . , xN ]. Therefore,
[y1, . . . , yN ] is contained in [x1, . . . , xN ]. Now, if y = ϕ̂(y1, . . . , yN ), x = ϕ̂(x1, . . . , xN ), and
ω ∈ Hom(〈y, y1, . . . , yN 〉), then ω̄ ∈ Hom(〈x, x1, . . . , xN 〉) and by definition

ω(y) = ϕ(ω̄(x1), . . . , ω̄(xN )) = ω̄(ϕ̂(x1, . . . , xN ) = ω(h(x)),

so that y = h(x). B

Denote H ∞
Bor(R

N, [ x ]) :=
{
ϕ ∈ HBor(RN ) : sup{|ϕ(s)| : s ∈ S ∩ [ x ]} < +∞

}
.

3.7. Theorem. Let E be a Dedekind σ-complete vector lattice. For x̂ := (x1, . . . , xn) in
EN there exists a unique sequentially order continuous lattice homomorphism

x̂ : ϕ 7→ x̂(ϕ) = ϕ̂(x1, . . . , xN )
(
ϕ ∈ H

∞
Bor(R

N , [ x ])
)

of H ∞
Bor(R

N , [ x ]) into E such that x̂(dtk) = xk (k := 1, . . . , N).
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C Let E0 be the order ideal in E generated by x1, . . . , xN . According to 1.3 there exists
a unique sequentially order continuous lattice homomorphism x̂ of HBor(RN ) into (E0)

uσ,
a universal σ-completion of E0, with x̂(dtk) = xk (k := 1, . . . , N). Clearly, the image of
H ∞
Bor(R

N , [ x ]) under x̂ is contained in E0. B

4. Examples

Now, we consider extended functional calculus on some special vector lattices E and for
some special functions ϕ. Everywhere in the section ϕ ∈ H (C;K).

4.1. Proposition. Let Q be a Hausdorff topological space, X a Banach lattice, and
Cb(Q,X) the Banach lattice of norm bounded continuous functions from Q to X. Assume
that u1, . . . , uN ∈ Cb(Q,X) and [u1, . . . , uN ] ⊂ K. Then [u1(q), . . . , uN (q)] ⊂ K for all q ∈ Q
and

ϕ̂(u1, . . . , uN )(q) = ϕ̂(u1(q), . . . , uN (q)) (q ∈ Q).

C Indeed, for q ∈ Q the map q̂ : Cb(Q,X) → X defined by q̂ : u 7→ u(q) is a
lattice homomorphism. Therefore, given u1, . . . , uN ∈ Cb(Q,X), by Proposition 3.6 we have
[q̂(u1), . . . , q̂(uN )] ⊂ [u1, . . . , uN ] and q̂(ϕ̂(u1, . . . , uN )) = ϕ̂(q̂(u1), . . . , q̂(uN )) from which the
required is immediate. B

4.2. Suppose now that Q is compact and extremally disconnected. Let u : D → X be a
continuous function defined on a dense subset D ⊂ Q. Denote by D̄ the totality of all points
in Q at which u has limit and put ū(q) := limp→q u(p) for all q ∈ D̄. Then the set D̄ is
comeager in Q and the function ū : D̄ → X is continuous. Recall that a set is called comeager
if its complement is meager. Thus, the function ū is the «widest» continuous extension of u
i. e., the domain of every continuous extension of u is contained in D̄ and, moreover, ū is an
extension of every continuous extension of u. The function ū is called the maximal extension
of u and denoted by ext(u), see [6]. A continuous function u : D → X defined on a dense
subset D ⊂ Q is said to be extended, if ext(u) = u. Note that all extended functions are
defined on comeager subsets of Q.

Let C∞(Q,X) stands for the set of all extended X-valued functions. The totality of
all bounded extended functions is denoted by Cb

∞(Q,X). Observe that C∞(Q,X) can be
represented also as the set of cosets of continuous functions u that act from comeager subsets
dom(u) ⊂ Q into X. Two vector-valued functions u and v are equivalent if u(t) = v(t)
whenever t ∈ dom(u) ∩ dom(v).

The set C∞(Q,X) is endowed, in a natural way, with the structure of a lattice ordered
module over the f -algebra C∞(Q). Moreover, C∞(Q,X) is uniformly complete and for any
u1, . . . , uN ∈ C∞(Q,X) the element ϕ̂(u1, . . . , uN ) is well defined in C∞(Q,X) provided that
[u1, . . . , uN ] ⊂ K.

4.3. Proposition. Let Q be a extremally disconnected conpact space and X a Banach
lattice. Let u1, . . . , uN ∈ C∞(Q,X) and [u1, . . . , uN ] ⊂ K. Then there exists a comeager
subset Q0 ⊂ Q such that Q0 ⊂ dom(ui) for all i := 1, . . . , N , [u1(q), . . . , uN (q)] ⊂ K for
every q ∈ Q0, and ϕ̂(u1, . . . , uN ) is the maximal extension of the continuous function q 7→
ϕ̂(u1(q), . . . , uN (q)) (q ∈ Q0), i. e.

ϕ̂(u1, . . . , uN )(q) = ϕ̂(u1(q), . . . , uN (q)) (q ∈ Q0).

C Put Q′ := dom(u1) ∩ · · · ∩ dom(uN ) and observe that Q′ is comeager. There exists
a unique function e ∈ C∞(Q) such that e′(q) := ‖u1(q)‖ + · · · + ‖uN (q)‖ (q ∈ Q′). Let E be
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the order ideal in C∞(Q) generated by e and define the sublattice E(X) ⊂ C∞(Q,X) by

E(X) :=
{
u ∈ C∞(Q,X) : (∃ 0 6 C ∈ R) (∀ q ∈ dom(u)) ‖u(q)‖ 6 Ce(q)

}
.

In the Boolean algebra of clopen subsets of Q there exists a partition of unity
(
Q(ξ)

)
ξ∈Ξ

with χQ(ξ)e ∈ C(Q) for all ξ ∈ Ξ. Put Q′ξ := Q′ ∩ Qξ and Q0 :=
⋃
ξ∈ΞQ

′
ξ and observe

that Q0 is comeager in Q. Let πξ stands for the band projection in C∞(Q,X) defined by
πξ : u 7→ χQ(ξ)u. Then πξ(E(X)) ⊂ Cb(Q,X) and (πξui)(q) = ui(q) (q ∈ Q′ξ; i= 1, . . . , N).
Finally, given q ∈ Q′ξ, in view of Propositions 3.6 and 4.1 we have [u1(q), . . . , uN (q)] =
[(πξu1)(q), . . . , (πξuN )(q)] ⊂ K and

(πξϕ̂(u1, . . . , uN ))(q)ϕ̂((πξu1)(q), . . . , (πξuN )(q)) =

= ϕ̂(πξu1, . . . , πξuN )(q) = ϕ̂(u1(q), . . . , uN (q))

and the proof is complete. B

4.4. Let (Ω,Σ, µ) be a measure space with the direct sum property and X be a Banach
lattice. Let L 0(µ,X) := L 0(Ω,Σ, µ,X) be the set of all Bochner measurable functions defined
almost everywhere on Ω with values in X and L0(µ,X) := L 0(µ,X)/ ∼ the space of all
equivalence classes (of almost everywhere equal) functions from L 0(µ,X). Then L0(µ,X)
is a Banach lattice and hence ϕ̂(u1, . . . , uN ) is well defined in L0(µ,X) for ϕ ∈ H (C;K)
and u1, . . . , uN ∈ L0(µ,X) with [u1, . . . , uN ] ⊂ K. Denote by ũ the equivalence class of
u ∈ L 0(µ,X).

Let L∞(µ,X) stand for the part of L 0(µ,X) comprising all essentially bounded functions
and L∞(µ,X) := L∞(µ,X)/ ∼. Put L∞(µ) := L∞(µ,R) and L∞(µ) := L∞(µ,R). Denote
by L∞(µ) the part of L∞(µ) consisting of all function defined everywhere on Ω. Then L∞(µ)
is a vector lattice with point-wise operations and order. Recall that a lattice homomorphism
ρ : L∞(µ)→ L∞(µ) is said to be a lifting of L∞(µ) if ρ(f) ∈ f for every f ∈ L∞(µ) and ρ(

�
)

is the identically one function on Ω. (Here
�

is the coset of the identically one function on Ω).
Clearly, a lifting is a right-inverse of the quotient homomorphism φ : f 7→ f̃ (f ∈ L∞(µ).
The space L∞(µ) admits a lifting if and only if (Ω,Σ, µ) possesses the direct sum property. If
f ∈ L∞(µ), then the function ρ(f̃) is also denoted by ρ(f).

4.5. Proposition. Let u1, . . . , uN ∈ L 0(Ω,Σ, µ, F ), and [ũ1, . . . , ũN ] ⊂ K. Then
there exists a measurable set Ω0 ⊂ Ω such that µ(Ω \ Ω0) = 0, [u1(ω), . . . , uN (ω)] ⊂ K
for all ω ∈ Ω0, and ϕ̂(ũ1, . . . , ũN ) is the equivalence class of the measurable function
ω 7→ ϕ̂(u1(ω), . . . , uN (ω)) (ω ∈ Ω0).

C The problem can be reduced to Proposition 4.2 by means of Gutman’s approach to
vector-valued measurable functions. Let ρ be a lifting of L∞(Ω,Σ, µ) and τ : Ω → Q be
the corresponding canonical embedding of Ω into the Stone space Q of the Boolean algebra
B(Ω,Σ, µ), see [?]. The preimage τ−1(V ) of any meager set V ⊂ Q is measurable and
µ-negligible. Moreover τ is Borel measurable and v ◦ τ is Bochner measurable for every
v ∈ C∞(Q,X). Denote by τ ∗ the mapping which sends each function v ∈ C∞(Q,X)
to the equivalence class of the measurable function v ◦ τ . The mapping τ ∗ is a linear
and order isomorphism of C∞(Q,X) onto L0(Ω,Σ, µ,X). If σ is the inverse of τ ∗,
then [σ(ũ1), . . . , σ(ũN )] ⊂ K and σϕ̂(ũ1, . . . , ũN ) = ϕ̂(σ(ũ1), . . . , σ(ũN )) by Proposition
3.6. According to Proposition 4.3 there exists a comeager subset Q0 ⊂ Q such that
[σ(ũ1)(q), . . . , σ(ũN )(q)] ⊂ K for all q ∈ Q0 and

ϕ̂(σ(ũ1), . . . , σ(ũN ))(q) = ϕ̂
(
σ(ũ1)(q), . . . , σ(ũN )(q)

)
(q ∈ Q0).
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Clearly, the functions u′i := σ(ũi)◦τ and ui are equivalent and ϕ̂(ũ1, . . . , ũN ) is the equivalence
class of σ(ϕ̂(ũ1, . . . , ũN )) ◦ τ . Let Ω′ stands for the set of all ω ∈ Ω with u′i(ω) = ui(ω) for
all i = 1, . . . , N . Then Ω0 := τ−1(Q0) ∩ Ω′ is measurable and µ(Ω \ Ω0) = 0. Substituting
q = τ(ω) we get [u′1(ω), . . . , u

′
N (ω)] ⊂ K for all ω ∈ Ω0 and

σϕ̂(ũ1, . . . , ũN )(τ(ω)) = ϕ̂
(
u′1(ω), . . . , u

′
N (ω)

)
(ω ∈ Ω0),

which is equivalent to the required statement. B

4.6. A conic set C ⊂ RN is said to be multiplicative if st := (s1t1, . . . , sN tN ) ∈ C for all
s := (s1, . . . , sN ) ∈ C and t := (t1, . . . , tN ) ∈ C. A function ϕ : C → R is called multiplicative
if ϕ(st) = ϕ(s)ϕ(t) for all s, t ∈ C.

Take a subset I ⊂ {1, . . . , N} and define RN
I as the cone in RN consisting of 0 and

(s1, . . . , sN ) ∈ RN
+ with si > 0 (i ∈ I). We will write xi À 0 (i ∈ I) if [x1, . . . , xN ] ⊂ RN

I .
The general form of a positively homogeneous multiplicative function ϕ : RN

I → R other that
ϕ ≡ 0 is given by

ϕ(t1, . . . , tN ) = 0 (t1 · . . . · tN = 0),

ϕ(t1, . . . , tN ) = exp(g1(ln t1)) · . . . · exp(gN (ln tN )) (t1 · . . . · tN 6= 0),

where g1, . . . , gN are some additive functions in R with
∑N

i=1 gi = IR. If ϕ is continuous at
any interior point of RN

+ or bounded on any ball contained in RN
I , then we get a Kobb–Duglas

type function and if, in addition, ϕ is nonnegative, then ϕ(t1, . . . , tN ) = tα1

1 · . . . · tαN
N with

α1, . . . , αN ∈ R and
∑N

i=1 αi = 1.
By definition xi À 0 (i ∈ I) implies that ϕ̂(x1, . . . , xN ) is well defined for every ϕ ∈

H (RN
I , [x1, . . . , xN ]). Thus, the expression xα1

1 · . . . · xαN
N is well defined in E provided that

xk À 0 for all k with αk < 0. At the same time ϕ ∈ H (RN
+ ) whenever I = ∅ and in this case

xα1

1 · . . . · xαN
N is well defined in E for arbitrary xk > 0 and αk > 0 (k= 1, . . . , N).

4.7. Proposition. Let E, F and G be vector lattices with E and F uniformly complete
and b : E×F → G a lattice bimorphism. Let x := (x1, . . . , xN ) ∈ E

N , y := (y1, . . . , yN ) ∈ F
N ,

and [x] ∪ [y] ⊂ K for some multiplicative closed conic set K ⊂ RN . If φ ∈ H (C,K) is
multiplicative on K, then φ̂(b(x1, y1), . . . , b(xN , yN )) exists in G and

φ̂ (b(x1, y1), . . . , b(xN , yN )) = b
(
φ̂(x1, . . . , xN ), φ̂(y1, . . . , yN )

)
.

C Put u = φ̂(x1, . . . , xN ) and v = φ̂(y1, . . . , yN ). Let E0 and F0 be the vector sublattices
in E and F generated by {u, x1, . . . , xN} and {v, y1, . . . , yN}, respectively. Let G0 be the
order ideal in G generated by b(e, f) where e := |u| + |x1| + · · · + |xN | and f := |v| + |y1| +
· · · + |yN |. Observe that Hom(G0) separates the points of G0. By [12, Theorem 3.2] every
R-valued lattice bimorphism on E0 × F0 is of the form σ ⊗ τ : (x, y) 7→ σ(x)τ(y) with
σ ∈ Hom(E0) and τ ∈ Hom(F0). Denote by b0 the restriction of b to E0 × F0. Given an
R-valued lattice homomorphism ω on G0, we have the representation ω ◦ b = σ ⊗ τ for some
lattice homomorphisms σ : E0 → R and τ : F0 → R. Since K is multiplicative, we have

(
ω(b(x1, y1), . . . , ω(b(xN , yN ))

)
=
(
σ(x1)τ(y1), . . . , σ(xN )τ(yN )

)

= (σ(x1), . . . , σ(xN )) · (τ(y1), . . . , τ(yN )) ∈ K,
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and thus [b(x1, y1), . . . , b(xN , yN ] ⊂ K. Now, making use of 3.6 and multiplicativity of φ we
deduce

ω ◦ b(u, v) = σ(φ̂(x1, . . . , xN ))τ(φ̂(y1, . . . , yN ))

= φ(σ(x1), . . . , σ(xN ))φ(τ(y1), . . . , τ(yN ))

= φ(σ(x1)τ(y1), . . . , σ(xN )τ(yN ))

= φ(ω ◦ b(x1, y1), . . . , ω ◦ b(xN , yN ))

= ω ◦ φ̂(b(x1, y1), . . . , b(xN , yN )),

as required by definition 3.2. B

4.8. In particular, we can take G := F ⊗ F , the Fremlin tensor product of E and F [5],
or E¯, the square of E [4], and put b := ⊗ or b := ¯ in 4.7. Thus, under the hypotheses of 4.7
we have

φ̂(x1 ⊗ y1, . . . , xN ⊗ yN ) = φ̂(x1, . . . , xN )⊗ φ̂(y1, . . . , yN ),

φ̂(x1 ¯ y1, . . . , xN ¯ yN ) = φ̂(x1, . . . , xN )¯ φ̂(y1, . . . , yN ).

Taking 4.6 into consideration we get the following: If 0 6 α1, . . . , αN ∈ R, α1 + · · ·+αN = 1,
then |x1 ⊗ y1|α1 · . . . · |xN ⊗ yN |

αN exists in E ⊗ F for all x1, . . . , xN ∈ E and y1, . . . , yN ∈ F
and

N∏

i=1

|xi ⊗ yi|
αi =

(
N∏

i=1

|xi|
αi

)
⊗

(
N∏

i=1

|yi|
αi

)
;

if, in addition, E = F , then we also have

N∏

i=1

|xi ¯ yi|
αi =

(
N∏

i=1

|xi|
αi

)
¯

(
N∏

i=1

|yi|
αi

)
.

4.10. Proposition. Let E be a uniformly complete vector lattice, x := (x1, . . . , xN ) ∈ E
N ,

p := (π1, . . . , πN ) ∈ Orth(E)N , and [x] ∪ [p] ⊂ K for some multiplicative closed conic set
K ⊂ C ⊂ RN . If φ ∈ H (C, [x]) ∩H (C, [p]) is multiplicative on K, then φ̂(π1x1, . . . , πNxN ))
exists in E and

φ̂(π1x1, . . . , πNxN ) = φ̂(π1, . . . , πN )
(
φ̂(x1, . . . , xN )

)
.

C The bilinear operator b from E × Orth(E) to E defined by b(x, π) := π(x) is a lattice
bimorphism and all we need is to apply Proposition 4.7. B

5. Minkowski duality

The Minkowski duality is the mapping that assigns to a sublinear function its support set
or, in other words, its subdifferential (at zero). For any Hausdorff locally convex space X the
Minkowski duality is a bijection between the collections of all lower semicontinuous sublinear
functions on X and all closed convex subsets of the conjugate space X ′, see [13, 19]. The
extended functional calculus (Theorems 2.3, 3.3, and 3.7) allows to transplant the Minkowski
duality to vector lattice setting.

5.1. A function ϕ : RN → R ∪ {+∞} is called sublinear if it is positively homogeneous,
i. e. ϕ(0) = 0 and ϕ(λt) = λϕ(t) for all λ > 0 and t ∈ RN , and subadditive, i. e. ϕ(s + t) 6

ϕ(s) + ϕ(t) for all s, t ∈ RN . A function ψ : RN → R ∪ {−∞} is called superlinear if −ψ is
sublinear. We say that ϕ is lower semicontinuous (ψ is upper semicontinuous) if the epigraph
epi(ϕ) := {(t, α) ∈ RN × R : ϕ(t) 6 α}

(
the hypograph hypo(ϕ) := {(t, α) ∈ RN × R : ϕ(t) >
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α}
)

is a closed subset of RN × R. The effective domain of a sublinear ϕ (superlinear ψ) is
dom(ϕ) := {t ∈ RN : ϕ(t) < +∞}

(
dom(ψ) := {t ∈ RN : ψ(t) > −∞}

)
. The subdifferential

∂ϕ of a sublinear function ϕ and the superdifferential ∂ψ of a superlinear function ψ are
defined by

∂ϕ := {t ∈ RN : 〈s, t〉 6 ϕ(s) (s ∈ RN )},

∂ψ := {t ∈ RN : 〈s, t〉 > ψ(s) (s ∈ RN )},

where s = (s1 . . . , sN ), t = (t1 . . . , tN ), 〈s, t〉 :=
∑N

k=1 sktk, see [11, 19]. Denote by H∨(RN ,K)
and H∧(RN ,K) respectively the sets of all lower semicontinuous sublinear functions ϕ :
RN → R ∪ {+∞} and upper semicontinuous superlinear functions ψ : RN → R ∪ {−∞}
which are finite and continuous on a fixed cone K ⊂ RN . Put H∨(RN ) := H∨(RN , {0}) and
H∧(RN ) := H∧(RN , {0}). We shall consider H∨(RN ) and H∧(RN ) as subcones of the vector
lattice of Borel measurable functions HBor(RN ) with the convention that all infinite values
are replaced by zero value.

5.2. Theorem. Let ϕ ∈ H∨(RN ) and ψ ∈ H∧(RN ). Then there exist countable subsets
A ⊂ ∂ϕ and B ⊂ ∂ψ such that the representations hold:

ϕ(s) = sup{〈s, t〉 : t ∈ A} (s ∈ RN ),

ψ(s) = inf{〈s, t〉 : t ∈ B} (s ∈ RN ).

C The claim is true for A = ∂ϕ and B = ∂ψ in any locally convex space X. The sets ∂ϕ
and ∂ψ may be replaced by their countable subsets A and B provided that X is a separable
Banach space, say X = RN (see [8, Proposition A.1]). B

5.3. Remark. For this abstract convexity see S. S. Kutateladze.

In this section we deal with the description of H-convex elements in E in the event that
H is the linear hull of a finite collection {x1, . . . , xN} ⊂ E. The following two theorems say
that under some conditions an element in E is H-convex if and only if it is of the form x̂(ϕ)
for some lower semicontinuous sublinear functions ϕ.

For A ⊂ RN denote by 〈A, x 〉 the set of all linear combinations
∑N

k=1 λkxk in E with
(λ1, . . . , λN ) ∈ A, so that

sup 〈A, x 〉 := sup

{
N∑

k=1

λkxk : (λ1, . . . , λN ) ∈ A

}
.

5.4. Theorem. Let E be a σ-complete vector lattice with an order unit, x1, . . . , xN ∈ E,
and x := (x1, . . . , xN ). Assume that ϕ ∈ H∨(RN ), ψ ∈ H∧(RN ), and [x] ⊂ dom(ϕ) ∩ dom(ψ).
Then x(ϕ) exists in E if and only if 〈 ∂ϕ, x 〉 is order bounded above, x(ψ) exists in E if and
only if 〈 ∂ψ, x 〉 is order bounded below, and the representations hold:

x̂(ϕ) = sup 〈 ∂ϕ, x 〉 , x̂(ψ) = inf
〈
∂ψ, x

〉
.

Moreover, ϕ̂(x1, . . . , xN )
(
ψ̂(x1, . . . , xN )

)
is an order limit of an increasing (decreasing)

sequence which is comprised of the finite suprema (infima) of linear combinations of the
form

∑N
i=1 λixi with (λ1, . . . λN ) ∈ ∂ϕ

(
(λ1, . . . λN ) ∈ ∂ψ

)
.

C Assume that ϕ ∈ H∨(RN ) and [x1, . . . , xN ] ⊂ dom(ϕ). Let E0 denotes the band in E
generated by

�
:= |x1|+ · · ·+ |xN | and by

�
and Euσ

0 stands for the universally σ-completion
E0. By Theorem 2.3 x̂(ϕ) always exists in E0 and the required representation holds true in



40 Kusraev A. G.

Euσ
0 , since ϕ is Borel. In more details, let ϕ0 vanishes on RN \ dom(ϕ) and coincides with

ϕ on dom(ϕ). Then ϕ0 is a Borel function on RN and according to 5.2 we may choose an
increasing sequence (ϕn) of Borel functions such that ϕn coincides with the finite supremum
of linear combinations of the form

∑N
i=1 λiti on dom(ϕ) and (ϕn) converges point-wise to ϕ0.

By Theorem 2.3 the sequence (̂x(ϕn)) is increasing and order convergent to x̂(ϕ0) = x̂(ϕ). Now
it is clear that 〈 ∂ϕ, x 〉 is order bounded above in E if and only if x(ϕ) ∈ E0. B

5.5. Theorem. Let E be a relatively uniformly complete vector lattice, x1, . . . , xN ∈ E,
and x := (x1, . . . , xN ). If ϕ ∈ H∨(RN ; [ x ]) and ψ ∈ H∧(RN ; [ x ]), then

x̂(ϕ) = sup 〈 ∂ϕ, x 〉 ,

x̂(ψ) = inf
〈
∂ψ, x

〉
.

Moreover, ϕ̂(x1, . . . , xN )
(
ψ̂(x1, . . . , xN )

)
is a relatively uniform limit of an increasing (dec-

reasing) sequence which is comprised of the finite suprema (infima) of linear combinations of
the form

∑N
i=1 λixi with λ= (λ1, . . . λN ) ∈ ∂ϕ (λ ∈ ∂ψ).

C Consider ϕ ∈H∨(RN ; [x1, . . . , xN ]) and denote y = ϕ̂(x1, . . . , xN ). By Theorem 3.3

vλ := λ1x1 + . . .+ λNxN 6 y

for an arbitrary λ := (λ1, . . . , λN ) ∈ ∂ϕ. Assume that v ∈ E is such that v > vλ for all λ ∈ ∂ϕ.
By the Krĕıns–Kakutani Representation Theorem there is a lattice isomorphism x 7→ x̃ of the
principal ideal Eu generated by u = |x1| + . . . + |xN | + |v| onto C(Q) for some compact
Hausdorff space Q. Then v, x1, . . . , xN , vλ, and y lie in Eu and for any λ ∈ ∂ϕ the point-wise
inequality ṽ(q) > ṽλ(q) (q ∈ Q) is true. By 4.1 and 3.6 we conclude that

ỹ(q) = ϕ(x̃1(q), . . . , x̃N (q)) = sup{ṽλ(q) : λ ∈ ∂ϕ} 6 ṽ(q).

Thus we have y 6 v and thereby y = sup{vλ : λ ∈ ∂ϕ}.
Put U := {vλ : λ ∈ ∂ϕ

}
and denote by U∨ the subset of E consisting of the suprema of

the finite subsets of U . Then U∨ ⊂ Eu and the set Ũ∨ := {ṽ : v ∈ U∨} is upward directed in
C(Q) and its point-wise supremum equals to ỹ. By Dini Theorem Ũ∨ converges to ỹ uniformly
and thus U∨ is norm convergent to y in Eu. The superlinear case ψ ∈ H∧(RN ; [x1, . . . , xN ])
is considered in a similar way. B

5.6. In some situation it is important to know wether the function is the upper or lower
envelope of a family of increasing linear functionals. Suppose that RN is preordered by a
cone K ⊂ RN , i. e. s > t means that s − t ∈ K. The dual cone of positive linear functionals
is denoted by K∗. A function φ : RN → R ∪ {±∞} is called increasing (with respect to
K) if s > t implies φ(s) > φ(t). A lower semicontinuous sublinear (an upper semicontinuous
superlinear) φ is increasing if and only if ∂φ ⊂ K∗ (∂φ ⊂ K∗) and thus φ is an upper envelope
of a family of increasing linear functionals (is a lower envelope of a family of increasing linear
functionals). If φ is increasing only on dom(φ), then this claim is no longer true but under
some mild conditions it is still valid for the restriction of φ onto dom(φ), see [13, 20].

Proposition. Let ϕ : RN → R ∪ {+∞} and ψ : RN → R ∪ {−∞} be the same as in
Theorem 5.2. Suppose that, in addition, dom(ϕ) − K = K − dom(ϕ) and dom(ψ) − K =
K − dom(ψ). Then the following assertions hold:

(1) ϕ is increasing on dom(ϕ) if and only if
ϕ(s) = sup{〈s, t〉 : t ∈ (∂ϕ) ∩K∗} (s ∈ dom(ϕ));

(2) ψ is increasing on dom(ψ) if and only if
ψ(s) = inf{〈s, t〉 : t ∈ (∂ψ) ∩K∗} (s ∈ dom(ψ)).
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C Indeed, we may assume RN = dom(ϕ)−K and then the function ϕ∗ : RN → R defined
by ϕ∗(s)= inf{ϕ(t) : t ∈ dom(ϕ), t > s} (s ∈ RN ) is increasing and sublinear and coincides
with ϕ on dom(ϕ); moreover, ∂ϕ∗ = (∂ϕ) ∩K∗. Similarly, assuming RN = dom(ψ) −K, we
deduce that the function ψ∗ : RN → R defined by ψ∗(s)= sup{ψ(t) : t ∈ dom(ψ), t 6 s} (s ∈
RN ) is increasing and superlinear and agrees with ψ on dom(ψ); moreover, ∂ψ∗ = (∂ψ)∩K∗.
It remains to observe that ϕ and ψ are increasing if and only if ϕ = ϕ∗ and ψ = ψ∗. B

5.7. Corollary. Assume that ϕ is increasing on dom(ϕ), ψ is increasing on dom(ψ),
dom(ϕ)−K = K−dom(ϕ), and dom(ψ)−K = K−dom(ψ). If, in addition, the assumptions
of either 4.4 or 4.5 are fulfilled, then in 4.4 and 4.5 the sets ∂ ϕ and ∂ϕ may be replaced by
(∂ ϕ) ∩K∗ and (∂ψ) ∩K∗.

5.8. A gauge is a sublinear function ϕ : RN → R+ ∪ {+∞}. A co-gauge is a superlinear
function ψ : RN → R+∪{−∞}. The lower polar function ϕ◦ of a gauge ϕ and the upper polar
function ψ◦ of a co-gauge ψ are defined by

ϕ◦(t) := inf{λ > 0 : (∀ s ∈ RN ) 〈s, t〉 6 λϕ(s)} (t ∈ RN ),

ψ◦(t) := sup{λ > 0 : (∀ s ∈ RN ) 〈s, t〉 > λψ(s)} (t ∈ RN )

(with the conventions sup∅ = −∞, inf ∅ = +∞, and 0(+∞) = 0(−∞) = 0). Thus, ϕ◦ is a
gauge and ψ◦ is a co-gauge. Observe also that the inequalities hold:

〈s, t〉 6 ϕ(s)ϕ◦(t) (s ∈ dom(ϕ), t ∈ dom(ϕ◦)),

〈s, t〉 > ψ(s)ψ◦(t) (s ∈ dom(ψ), t ∈ dom(ψ◦)).

Denote ϕ◦◦ := (ϕ◦)◦ and ψ◦◦ := (ψ◦)◦.

5.9. Bipolar Theorem. Let ϕ be a gauge and ψ be a co-gauge. Then ϕ◦◦ = ϕ if and
only if ϕ is lower semicontinuous and ψ◦◦ = ψ if and only if ψ is upper semicontinuous.

C See [19]. B

5.10. The lower polar function ϕ◦ and the upper polar function ψ0 can be also calculate
by

ϕ◦(t) = sup
s∈RN

〈s, t〉

ϕ(s)
= sup{〈s, t〉 : s ∈ RN , ϕ(s) 6 1} (t ∈ RN )

(with the conventions α/0 = +∞ for α > 0 and α/0 = 0 for α 6 0) and

ψ◦(t) = inf
s∈RN

〈s, t〉

ψ(s)
= inf

{
〈s, t〉 : s ∈ RN , ψ(s) > 1 or ψ(s) = 0

}
(t ∈ RN )

(with the conventions α/0 = +∞ for α > 0 and α/0 = −∞ for α < 0).
Denote by G∨(RN ,K) and G∧(RN ,K) respectively the sets of all lower semicontinuous

gauges ϕ : RN → R+ ∪ {+∞} and upper semicontinuous co-gauges ψ : RN → R+ ∪ {−∞}
which are finite and continuous on a fixed cone K ⊂ RN . Put G∨(RN ) := G∨(RN , {0}) and
G∧(RN ) := G∧(RN , {0}). Observe that G∨(RN ) ⊂H∨(RN ) and G∧(RN ) ⊂ H∧(RN ).

5.11. Corollary. Assume that either the assumptions of 5.4 are fulfilled and, in addition,
ϕ ∈ G∨(RN ) and ψ ∈ G∧(RN ), or the assumptions of 5.5 are fulfilled and additionally ϕ ∈
G∨(RN ; [ x ]) and ψ ∈ H∧(RN ; [ x ]). Then in 5.4 and 5.5 the sets ∂ ϕ and ∂ϕ may be replaced
by {t ∈ RN : ϕ◦(t) 6 1} and {t ∈ RN : ψ◦(t) > 1}, respectively.

C It is immediate from the Bipolar Theorem and the above definitions, since obviously
∂ ϕ = {t ∈ RN : ϕ◦(t) 6 1} and, ∂ ψ = {t ∈ RN : ψ◦(t) > 1}. B
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