УДК 512.544.2

О ПОРОЖДАЕМОСТИ ГРУППЫ $PSL_N(Z)$ ТРЕМЯ ИНВОЛЮЦИЯМИ, ДВЕ ИЗ КОТОРЫХ ПЕРЕСТАНОВОЧНЫ 1

Я. Н. Нужин

Доказано, что проективная специальная линейная группа $PSL_n(Z)$, $n \ge 2$, над кольцом целых чисел Z тогда и только тогда порождается тремя инволюциями, две из которых перестановочны, когда $n \ge 5$.

Ключевые слова: кольцо целых чисел, специальная линейная группа, порождающие элементы.

Основным результатом статьи является

Теорема 1. Проективная специальная линейная группа $PSL_n(Z)$, $n \ge 2$, над кольцом целых чисел Z тогда и только тогда порождается тремя инволюциями, две из которых перестановочны, когда $n \ge 5$.

Группы, порожденные тремя инволюциями, две из которых перестановочны, будем называть $(2\times2,2)$ -порожденными, причем не исключаются случаи, когда какие-то две или даже все три инволюции совпадают. Ясно, что если какая-то группа допускает нетривиальный гомоморфный образ, который не является $(2\times2,2)$ -порожденной группой, то она также не будет $(2\times2,2)$ -порождена. Поэтому в силу гомоморфизма $PSL_n(Z)$ на $PSL_n(Z_n)$ утверждение теоремы для n=2,3,4 вытекает из того, что группы $PSL_2(7)$, $PSL_3(2)$, $PSL_4(2)$ не являются $(2\times2,2)$ -порожденными [1]. Для $n\geqslant 5$ порождающие тройки инволюций, две из которых перестановочны, группы $PSL_n(Z)$ выписываются явно, причем, если $n\neq 2(2k+1)$, то порождающие тройки инволюций берутся из $SL_n(Z)$. Таким образом, при $n\geqslant 5$ и $n\neq 2(2k+1)$ получаем более сильное утверждение: группа $SL_n(Z)$ является $(2\times2,2)$ -порожденной. Ранее [4] М. К. Тамбурини и П. Цукка доказали $(2\times2,2)$ -порождаемость группы $SL_n(Z)$ при $n\geqslant 14$. Теорема 1 анонсировалась в [2].

1. Обозначения и вспомогательные результаты

Здесь фиксируются некоторые специальные элементы из общей линейной группы $GL_n(Z)$ над кольцом целых чисел Z. Для элементов из $PSL_n(Z)$ будем также использовать матричную запись, считая при этом два элемента равными, если они различаются лишь умножением на скалярную матрицу из $SL_n(Z)$.

Как обычно, через $t_{ij}(k)$, $k \in \mathbb{Z}$, $i \neq j$, будем обозначать трансвекции, т. е. матрицы $E_n + ke_{ij}$, где E_n — единичная $(n \times n)$ -матрица, а e_{ij} — матричные единицы. Следующая лемма хорошо известна (см., например, [3, с.107]).

^{© 2008} Нужин Я. Н.

 $^{^1}$ Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, проект № 07-01-00824.

Лемма 1. Группа $SL_n(Z)$ порождается трансвекциями $t_{ij}(1), i \neq j, i, j = 1, 2, \dots, n$. Пусть

$$\tau = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 & 1 \\ 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & \dots & 1 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 0 & \dots & 0 & 0 & 0 \end{pmatrix}, \quad \mu = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 & 1 \\ 1 & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & 1 & 0 \end{pmatrix}.$$

Матрица au — инволюция, а μ имеет порядок n и действует сопряжениями регулярно на следующем множестве трансвекций:

$$M = \{t_{1n}(1), t_{i+1i}(1), i = 1, 2, \dots, n-1\}.$$

Коммутируя между собой трансвекции из множества M, можно получить все трансвекции $t_{ij}(1)$. Следовательно, множество M порождает группу $SL_n(Z)$. Более того, справедлива

Лемма 2. Группа $SL_n(Z)$ порождается одной из трансвекций

$$t_{1n}(1), t_{i+1}(1), t_{n-1n}(1), t_{i+1}(1), i = 1, 2, \dots, n-1,$$

и мономиальной матрицей $\eta\mu$ для любой (1,-1)-диагональной матрицы η c условием, что $\eta\mu\in SL_n(Z)$.

Здесь и далее под (1,-1)-диагональной матрицей понимается диагональная матрица с элементами ± 1 по диагонали.

В следующем параграфе наряду с матричной записью элементов из групп $SL_n(Z)$ и $PSL_n(Z)$ будем использовать терминологию групп Шевалле, рассматривая $SL_n(Z)$ и $PSL_n(Z)$ соответственно как универсальную и присоединенную группу Шевалле типа A_{n-1} .

Пусть Φ — система корней типа A_l с базой $\Pi = \{r_1, r_2, \dots, r_l\}, \ l = n-1.$

Группа Шевалле $A_l(Z)$ (универсальная или присоединенная) типа A_l над кольцом целых Z порождается своими корневыми элементами $x_r(1), r \in \Phi$.

Для любого $r \in \Phi$ и $t \neq 0$ положим

$$n_r(t) = x_r(t)x_{-r}(-t^{-1})x_r(t), \quad n_r = n_r(1), \quad h_r(-1) = n_r^2.$$

Отображение

$$t_{i+1i}(t) \to x_{r_i}(t), \quad i = 1, 2, \dots, l, \ t \in Z,$$

продолжается до изоморфизма группы $SL_n(Z)$ на универсальную группу Шевалле $A_l(Z)$, а выписанные выше мономиальные матрицы τ и μ являются соответственно прообразами элементов w_0 и w из группы Вейля W при естественном гомоморфизме мономиальной подгруппы N на группу W, где $w_0(r) \in \Phi^-$ для любого $r \in \Phi^+$, а $w = w_{r_1}w_{r_2}\dots w_{r_l}$. Здесь Φ^+ — положительные корни, а Φ^- — отрицательные корни. Поэтому лемму 2 можно переформулировать в терминах групп Шевалле.

Лемма 3. Группа Шевалле $A_l(Z)$ порождается любым корневым

$$x_{\pm r_i}(1), \quad r_i \in \Pi, \quad x_{\pm (r_1 + \dots + r_l)} \tag{1}$$

и мономиальным n_w элементами, если $w = w_{r_1} w_{r_2} \dots w_{r_l}$.

В статье приняты следующие сокращения:

$$a^b = bab^{-1}, \quad [a, b] = aba^{-1}b^{-1}.$$

70 Нужин Я. Н.

2. Порождающие тройки инволюций при $n\geqslant 5$

Пусть τ и μ такие же как в первом параграфе. Матрицы τ и

$$\tau \mu = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & \dots & 1 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}$$

являются инволюциями, но не всегда лежат $SL_n(Z)$ (это зависит от их размерности). Подберем (1,-1)-диагональные матрицы η_1 и η_2 так, чтобы матрицы $\eta_1\tau$ и $\eta_2\tau\mu$ лежали в $SL_n(Z)$, а их образы в $PSL_n(Z)$ были бы инволюциями. Выбираем η_1 , η_2 следующим образом:

```
при n=4k+1 (=5,9,\dots) \eta_1=\eta_2=E_n; при n=2(2k+1)+1 (=7,11,\dots) \eta_1=-E_n, \eta_2=E_n; при n=4k (=8,12,\dots) \eta_1=E_n, \eta_2=\mathrm{diag}(E_{n-1},-1); при n=2(2k+1) (=6,10,\dots) \eta_1=\mathrm{diag}(-E_{2k+1},\,E_{2k+1}), \eta_2=E_n. Пусть \alpha=t_{21}(-1)t_{n-1n}(-1)\,\mathrm{diag}(-1,E_{n-2},-1), при n=5,6, \alpha=t_{21}(1)t_{n-1n}(1)\,\mathrm{diag}(1,-1,-1,E_{n-6},-1,-1,1), при n\geqslant 7, \beta=\eta_1\tau, при n\geqslant 5, \gamma=\eta_2\tau\mu, при n\geqslant 5.
```

Утверждения следующей леммы проверяются непосредственно.

Лемма 4. Пусть α , β , γ — такие как и выше. Тогда:

- 1) $\alpha\beta = \beta\alpha$;
- 2) α , γ инволюции из $SL_n(Z)$;
- 3) β инволюция из $SL_n(Z)$, если $n \neq 2(2k+1)$;
- 4) если n=2(2k+1), то $\beta^2=-E_n$ и, следовательно, образ β является инволюцией в $PSL_n(Z).$

В следующих параграфах 3–5 показывается, что инволюции α , β , γ порождают группу $PSL_n(Z)$ при $n\geqslant 7,\ n=6$ и n=5 соответственно. Далее будет полезно следующее замечание. В силу построения $\beta\gamma=\eta_3\mu$ для некоторого (1,-1)-диагонального элемента η_3 . Поэтому по лемме 2 доказательство теоремы 1 можно свести к проверке предположения следующей леммы.

Лемма 5. Если группа, порожденная инволюциями α , β , γ , содержит одну из трансвекций

$$t_{1n}(1)$$
, $t_{i+1}(1)$, $t_{n-1n}(1)$, $t_{ii+1}(1)$, $i = 1, 2, \dots, n-1$,

в терминологии групп Шевалле один из корневых элементов

$$x_{\pm r_i}(1), \quad r_i \in \Pi, \quad x_{\pm (r_1 + \dots + r_l)}(1),$$

то она совпадает с группой $PSL_n(Z)$.

3. Доказательство теоремы 1 при $n \geqslant 7$

Пусть α , β , γ , τ , μ , η_1 , η_2 , η_3 такие как и в параграфах 1 и 2, $n \geqslant 7$ и l = n-1. Тогда $\alpha = x_{r_1}(1)x_{-r_l}(1)h_{r_2}(-1)h_{r_{l-1}}(-1)$, $\beta = \eta_1\tau$, $\gamma = \eta_2\tau\mu$, $\eta \equiv \beta\gamma = \eta_3\mu$.

Вычисления показывают, что при $l \geqslant 6$

$$\alpha^{\eta} = x_{r_2}(\pm 1)x_{r_1+\dots+r_l}(\pm 1)h_{r_3}(-1)h_{r_l}(-1),$$

$$\alpha^{\eta^2} = x_{r_3}(\pm 1)x_{-r_1}(\pm 1)h_{r_4}(-1)h_{r_1+\dots+r_l}(-1),$$

$$[\alpha, \alpha^{\eta}] = x_{r_1+r_2}(\pm 1)x_{r_1+\dots+r_{l-1}}(\pm 1),$$

$$([\alpha, \alpha^{\eta}]\alpha^{\eta^2})^2 = x_{r_1+r_2+r_3}(\pm 1)x_{r_2}(\pm 1)x_{r_2+r_3}(\pm 1)x_{r_2+\dots+r_{l-1}}(\pm 1),$$

$$\theta \equiv (([\alpha, \alpha^{\eta}]\alpha^{\eta^2})^2)^{\eta} = x_{r_2+r_3+r_4}(\pm 1)x_{r_3}(\pm 1)x_{r_3+r_4}(\pm 1)x_{r_3+\dots+r_l}(\pm 1),$$

$$[\theta, [\alpha, \alpha^{\eta}]] = x_{r_1+r_2+r_3}(\pm 1)x_{r_1+r_2+r_3+r_4}(\pm 1)x_{r_1+\dots+r_l}(\pm 1).$$

Пусть $l \geqslant 7$. Тогда

$$[\alpha, [\theta, [\alpha, \alpha^{\eta}]]] = x_{r_1 + \dots + r_{l-1}}(\pm 1),$$

$$[\alpha, [\theta, [\alpha, \alpha^{\eta}]]]^{\beta} = x_{-r_2 - \dots - r_l}(\pm 1),$$

$$[[\theta, [\alpha, \alpha^{\eta}]], [\alpha, [\theta, [\alpha, \alpha^{\eta}]]]^{\beta}] = x_{r_1}(\pm 1).$$

Таким образом, в силу леммы 5 теорема 1 доказана для $n \geqslant 8$.

Пусть l=6. Используя предыдущие вычисления, справедливые при l=6, получаем

$$[\alpha, [\theta, [\alpha, \alpha^{\eta}]]] = x_{r_1 + \dots + r_5}(\pm 1) x_{r_1 + r_2 + r_3 + r_4}(\pm 2),$$

$$[\alpha, [\theta, [\alpha, \alpha^{\eta}]]]^{\beta} = x_{-r_2 - \dots - r_6}(\pm 1) x_{-r_3 - r_4 - r_5 - r_6}(\pm 2),$$

$$[[\theta, [\alpha, \alpha^{\eta}]], [\alpha, [\theta, [\alpha, \alpha^{\eta}]]]^{\beta}] = x_{r_1}(\pm 1) x_{r_1 + r_2}(\pm 2),$$

$$(x_{r_1}(\pm 1) x_{r_1 + r_2}(\pm 2))^{\eta} = x_{r_2}(\pm 1) x_{r_2 + r_3}(\pm 2),$$

$$[x_{r_1}(\pm 1) x_{r_1 + r_2}(\pm 2), x_{r_2}(\pm 1) x_{r_2 + r_3}(\pm 2)] = x_{r_1 + r_2}(\pm 1) x_{r_1 + r_2 + r_3}(\pm 2),$$

$$[\alpha, x_{r_1 + r_2}(\pm 1) x_{r_1 + r_2 + r_3}(\pm 2)] = x_{r_1 + r_2}(\pm 2).$$

Сейчас легко получаем, что корневой элемент $x_{r_1}(1)$ лежит в группе, порожденной инволюциями α , β , γ , и остается только воспользоваться леммой 5. Таким образом, для $n \geqslant 7$ теорема 1 доказана.

4. Доказательство теоремы 1 для n=6

В этом параграфе наряду с матричной записью элементов из группы $SL_6(Z)$ будем использовать и терминологию групп Шевалле. Это удобно для быстрого контроля матричных вычислений, хотя в некоторых длинных произведениях (коммутаторах), для того чтобы точно указать знак у коэффициента трансвекции (корневого элемента), входящей в правую часть равенства, без матричного представления трудно обойтись.

Пусть α , β , γ , τ , μ , η_1 , η_2 такие как и в параграфах 1 и 2. Тогда при n=6

$$\alpha = \begin{pmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{pmatrix} = x_{r_1}(-1)x_{-r_5}(-1)h_{r_1+\dots+r_5}(-1),$$

72 Нужин Я. Н.

Пусть $M = \langle \alpha, \beta, \gamma \rangle$. Вычисления показывают, что

$$\alpha^{\eta} = x_{r_2}(\pm 1)x_{r_1+\dots+r_5}(\pm 1)h_{r_3}(-1)h_{r_5}(-1),$$

$$\alpha^{\eta^2} = x_{r_3}(\pm 1)x_{-r_1}(\pm 1)h_{r_4}(-1)h_{r_1+\dots+r_5}(-1),$$

$$[\alpha, \alpha^{\eta}] = x_{r_1+r_2}(\pm 1)x_{r_1+\dots+r_4}(\pm 1),$$

$$[\alpha, \alpha^{\eta}]^{\eta} = x_{r_2+r_3}(\pm 1)x_{r_2+\dots+r_5}(\pm 1),$$

$$[\alpha, \alpha^{\eta}]^{\eta^2} = x_{r_3+r_4}(\pm 1)x_{-r_1-r_2}(\pm 1),$$

$$[\alpha, \alpha^{\eta}]^{\eta^3} = x_{r_4+r_5}(\pm 1)x_{-r_2-r_3}(\pm 1).$$

Так как корневые элементы $x_{r_1+r_2}(\varepsilon_1)$ и $x_{r_1+\cdots+r_4}(\varepsilon_2)$, а также $x_{r_3+r_4}(\varepsilon_3)$ и $x_{-r_1-r_2}(\varepsilon_4)$ перестановочны и их произведения лежат в M для любых ε_2 , $\varepsilon_4=\pm 1$ при подходящих ε_1 , $\varepsilon_3=\pm 1$, зависящих от ε_2 , ε_4 , то положив $\varepsilon_4=-1$ и подобрав соответствующим образом ε_2 , получим включение

$$\delta \equiv [\alpha, \alpha^{\eta}][\alpha, \alpha^{\eta}]^{\eta^{2}}[\alpha, \alpha^{\eta}]^{-1} = x_{r_{1} + r_{2}}(\varepsilon_{2})x_{-r_{1} - r_{2}}(-1)x_{r_{1} + r_{2}}(-\varepsilon_{2}) \in M.$$

При $\varepsilon_2 = 1$, $\delta = n_{r_1+r_2}x_{r_1+r_2}(-2)$, а при $\varepsilon_2 = -1$ $\delta = x_{r_1+r_2}(-2)n_{r_1+r_2}$.

Рассмотрим только первый случай, второй рассматривается аналогично, нужно только δ заменить на δ^{-1} . В этом случае имеем

$$\alpha^{\delta} = x_{-r_2}(\pm 1)x_{-r_5}(\pm 1)x_{-r_1-r_2}(\pm 2)h_{r_1}(-1)h_(r_4)(-1),$$

$$\theta \equiv ([\alpha, \alpha^{\eta}]^{\eta^3} \cdot \alpha^{\delta})^2 = x_{r_4}(\pm 1)x_{-r_2-r_3}(\pm 2),$$

$$\theta^{\eta} = x_{r_5}(\pm 1)x_{-r_3-r_4}(\pm 2),$$

$$\theta^{\beta\eta} = (\theta^{\eta})^{\beta} = x_{-r_1}(\pm 1)x_{r_2+r_3}(\pm 2),$$

$$(\theta^{\beta\eta})^{\eta^{-1}} = x_{r_1+\dots+r_5}(\pm 1)x_{r_1+r_2}(\pm 2),$$

$$\delta((\theta^{\beta\eta})^{\eta^{-1}})^{\pm 1} = n_{r_1+r_2}x_{r_1+\dots+r_5}(\pm 1),$$

$$(\delta((\theta^{\beta\eta})^{\eta^{-1}})^{\pm 1})^2 = h_{r_1+r_2}(-1)x_{r_3+r_4+r_5}(\pm 1)x_{r_1+\dots+r_5}(\pm 1),$$

$$(\delta((\theta^{\beta\eta})^{\eta^{-1}})^{\pm 1})^2 \cdot (\theta^{\beta\eta})^{\eta^{-1}} = h_{r_1+r_2}(-1)x_{r_3+r_4+r_5}(\pm 1)x_{r_1+r_2}(\pm 2),$$

$$((\delta((\theta^{\beta\eta})^{\eta^{-1}})^{\pm 1})^2 \cdot (\theta^{\beta\eta})^{\eta^{-1}})^2 = x_{r_1+r_2}(\pm 4),$$

$$(x_{r_1+\dots+r_5}(\pm 1)x_{r_1+r_2}(\pm 2))^{\pm 2} \cdot x_{r_1+r_2}(\pm 4) = x_{r_1+\dots+r_5}(\pm 2),$$

$$(x_{r_1+\dots+r_5}(\pm 2))^{\eta^2} = x_{-r_2}(\pm 2),$$

$$[\alpha^{\eta^2}, (x_{-r_2}(\pm 2))] = x_{-r_1-r_2}(\pm 2),$$

$$(x_{-r_1-r_2}(\pm 2))^{\delta^{-1}} = x_{r_1+r_2}(\pm 2),$$

$$(x_{+r_1+r_2}(\pm 2))^{\eta} = x_{r_2+r_3}(\pm 2),$$

$$\theta^{\beta\eta} \cdot (x_{r_2+r_3}(\pm 2))^{\pm 1} = x_{-r_1}(\pm 1).$$

Сейчас остается только применить лемму 5. Таким образом, для n=6 теорема 1 доказана.

5. Доказательство теоремы 1 для n=5

Пусть α , β , γ , τ , μ , η_1 , η_2 такие как и в параграфах 1 и 2, а $\eta \equiv \beta \gamma$. Тогда при n=5 матрицы η_1 , η_2 единичные и, следовательно,

$$\alpha = \begin{pmatrix} -1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix}, \quad \beta = \tau = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix},$$

$$\gamma = \tau \mu = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad \eta = \mu = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

Вычисления показывают, что

$$[\alpha,\alpha^{\eta}] = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad [\alpha,\alpha^{\eta}]^{\eta} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix},$$

$$[\alpha, [\alpha, \alpha^{\eta}]^{\eta}] = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ -1 & -2 & 0 & 0 & 1 \end{pmatrix}, \quad [\alpha, [\alpha, \alpha^{\eta}]^{\eta}]^{\eta^{-1}} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ -2 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

$$[[\alpha, \alpha^{\eta}]^{\eta}, [\alpha, [\alpha, \alpha^{\eta}]^{\eta}]^{\eta^{-1}}] = t_{42}(1), \quad (t_{42}(1))^{\eta^3} = t_{25}(1), \quad [t_{42}(1), t_{25}(1)]^{\beta} = t_{21}(1).$$

Сейчас остается лишь применить лемму 5.

Литература

- 1. Нужин Я. Н. Порождающие тройки инволюций групп Шевалле над конечным полем характеристики 2 // Алгебра и логика.—1990.—Т. 29, № 2.—С. 192–206.
- 2. Нужин Я. Н. О $(2 \times 2, 2)$ -порождаемости групп Шевалле над кольцом целых чисел // Межд. сем. по теории групп, посвященный 70-летию А. И. Старостина и 80-летию Н. Ф. Сесекина.— Екатеринбург, 2001.—С. 168-169.

74 Нужин Я. Н.

- 3. Стейнберг Р. Лекции о группах Шевалле.—М.: Мир, 1975.—262 с.
- 4. Tamburini M. C., Zucca P. Generation of Certain Matrix Groups by Three Involutions, Two of Which Commute // J. of Algebra.—1997.—V. 195.—P. 650–661.

Статья поступила 16 января 2008 г.

Нужин Яков Нифантьевич Сибирский федеральный университет Красноярск, 660074, РОССИЯ E-mail: nuzhin@fipu.krasnoyarsk.edu