
Владикавказский математический журнал

июль–сентябрь, 2007, Том 9, Выпуск 3

UDC 517.98
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Hölder type inequalities for orthosymmetric bilinear operators are obtained.

Mathematics Subject Classification (2000): 47A63, 47B65, 47A60.

Key words: orthosymmetric bilinear operator, lattice bimorphism, homogeneous functional calculus,
squares of vector lattices, Hölder type inequalities.

1. Introduction

The homogeneous functional calculus on vector lattices is a useful tool in a variety of
areas. One of the interesting application is the study of powers of Banach lattices initiated
by G. Ya. Lozanovskĭı [18]. Recently G. Buskes and A. van Rooij [8] introduced the concept
of squares of Archimedean vector lattices which allows to represent orthoregular bilinear
operators as linear regular operators. In particular, it is proved in [9] that the square of a
relatively uniformly complete vector lattice can be constructed by well known p-convexification
procedure (with p = 1/2) which is also based on the homogeneous functional calculus, see
[17, 22].

The aim of this paper is to consider some interplay between squares of vector lattices
and homogeneous functional calculus and obtain Hölder type inequalities for orthosymmetric
bilinear operators. We also collect several useful facts concerning homogeneous functional
calculus on relatively uniformly complete vector lattices some of which despite of their
simplicity does not seem appeared in the literature.

There are different ways to introduce the homogeneous functional calculus on vector
lattices, see [6, 13, 17, 19, 21, 22]. We follow the approach [6, 9] going back also to
G. Ya. Lozanovskĭı [19]. For the theory of vector lattices and positive operators we refer
to the books [2] and [14]. All vector lattices in this paper are real and Archimedean.

1.1. We start by recalling some definitions and results from [7]. Let E and G be vector
lattices. A bilinear operator b : E×E → G is said to be orthosymmetric if |x|∧ |y| = 0 implies
b(x, y) = 0 for arbitrary x, y ∈ E, see [8]. If b(x, y) > 0 for all 0 6 x ∈ E and 0 6 y ∈ E, then
b is named positive. The difference of two positive orthosymmetric bilinear operators is called
orthoregular. Denote by BLor(E;G) the space of all orthoregular bilinear operators from E×E
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to G ordered by the cone of positive orthosymmetric operators. Aspects of orthosymmetric
bilinear operators are presented in [7, 15, 16].

We say that a bilinear operator b is symmetric if b(x, y) = b(y, x) for all x, y ∈ E.
The following important property of orthosymmetric bilinear operators was established in [8,
Corollary 2].

An orthosymmetric positive bilinear operator is symmetric.

A bilinear operator b is said to be lattice bimorphism if the mappings y 7→ b(e, y) (y ∈ F )
and x 7→ b(x, f) (x ∈ E) are lattice homomorphisms for all 0 6 e ∈ E and 0 6 f ∈ F . For a
lattice bimorphism the converse is also true, see [7, Proposition 1.7].

A lattice bimorphism is orthosymmetric if and only if it is symmetric.

1.2. For an arbitrary vector lattice E there exists a vector lattice E¯ and an
orthosymmetric lattice bimorphism ¯ : (x, y) 7→ x ¯ y from E × E to E¯ such that the
following universal property holds: whenever b is a symmetric lattice bimorphism from E×E
to some vector lattice F , there is a unique lattice homomorphism Φb : E

¯ → F with b = Φb¯.

The pair (E¯,¯) is essentially unique, i.e. if for some vector lattice E} and symmetric
lattice bimorphism } : E ×E → E} the pair (E},}) obeys the said universal property, then
there exists a lattice isomorphism ι from E¯ onto E} such that ι¯ = } (and, of course,
ι−1} = ¯).

The vector lattice E¯ and the lattice bimorphism ¯ are called the square of E and the
canonical bimorphism, respectively. The following result claims that the mentioned universal
property of squares can be essentially extended, see [7, Theorem 3.1] and [9, Theorem 9].

1.3. Let E and G be vector lattices with G relatively uniformly complete. Then for every

bilinear orthoregular operator b : E × E → G there exists a unique linear regular operator

Φb : E
¯ → G such that

b(x, y) = Φb(x¯ y) (x, y ∈ E).

The correspondence b 7→ Φb is an isomorphism of the ordered vector spaces BLor(E,G) and

Lr(E
¯, G).

2. Homogeneous functions on vector lattices

In this section we introduce homogeneous functional calculus on relatively uniformly
complete vector lattices and state some useful facts.

2.1. Denote by H (RN ) the vector lattice of all continuous positively homogeneous
functions f : RN → R. In accordance with [6] we say that f(x1, . . . , xN ) exists in E and write
y = f(x1, . . . , xN ) if there is an element y ∈ E such that ω(y) = f(ω(x1), . . . , ω(xN )) for
every R-valued lattice homomorphism ω on the sublattice of E generated by {x1, . . . , xN , y}.
The definition is correct in the sense that if L is any vector sublattice of E containing
{x1, . . . , xN , y} and ω(y) = f(ω(x1), . . . , ω(xN )) (ω ∈ Ω) for some point separating set Ω
of R-valued lattice homomorphisms on L, then y = f(x1, . . . , xN ). It is immediate from the
definition that f(x, . . . , x) = xf(1, . . . , 1) whenever 0 6 x ∈ E. Define dtj ∈ H (RN ) by
dtj(t1, . . . , tN ) = tj (j := 1, . . . , N).

2.2. Theorem. Let E be a relatively uniformly complete vector lattice and x1, . . . , xN ∈
E. Then f(x1, . . . , xN ) exists for any f ∈ H (RN ) and the mapping

f 7→ f(x1, . . . , xN )
(
f ∈ H (RN )

)
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is a unique lattice homomorphism from H (RN ) into E with dtj(x1, . . . , xN ) = xj (j :=
1, . . . , N).

In particular, if f, g ∈ H (RN ) and f 6 g, then f(x1, . . . , xN ) 6 g(x1, . . . , xN ) for all
(x1, . . . , xN ) ∈ EN . Moreover, the inequality holds:

|f(x1, . . . , xN )| 6 ‖f‖
N∨

j=1

|xj |,

where ‖f‖ := sup{f(t1, . . . , tN ) : (t1, . . . , tN ) ∈ RN , maxj |tj | = 1}.

2.3. Let K,M,N ∈ N and consider positively homogeneous functions f1, . . . , fM ∈
H (RN ) and g1, . . . , gK ∈ H (RM ). Denote f := (f1, . . . , fM ) and g := (g1, . . . , gK). Then
g1 ◦ f, . . . , gK ◦ f ∈H (RN ) and, for any x = (x1, . . . , xN ) ∈ EN and y = (y1, . . . , yM ) ∈ EM ,
the elements f(x) := (f1(x), . . . , fM (x)) ∈ EM and g(y) := (g1(y), . . . , gK(y)) ∈ EK are well
defined. Moreover,

(g ◦ f)(x) = g(f(x))
(
x = (x1, . . . , xN ) ∈ EN

)
.

In particular, if N =M = K and g = f−1, then

f−1(f(x)) = x, f(f−1(y)) = y
(
x, y ∈ EN

)
.

We define also f1 × g1 : EN+M → E2 by (f1 × g1)(x, y) := (f1(x), g1(y)).

2.4. Let E and F be relatively uniformly complete vector lattices, h : E → F be a lattice
homomorphism, x1, . . . , xN ∈ E, and f ∈ H (RN ). Then

h(f(x1, . . . , xN )) = f(h(x1), . . . , h(xN ))).

If E is a relatively uniformly complete vector sublattice of F containing x1, . . . , xN ∈ F and
h is the inclusion map E → F , then f(x1, . . . , xN ) relative to F is contained in E and its
meaning relative to E is the same.

2.5. Assume that f ∈H (RN ) possesses the following property:

(∀t1, . . . , tN ∈ R) t1t2 · . . . · tN = 0 ⇒ f(t1, t2, . . . , tN ) = 0.

Then for any u, x1, . . . , xN ∈ E and fixed integer 1 6 k 6 N we have

xk ⊥ u ⇒ f(x1, . . . , xk−1, xk, xk+1, . . . , xN ) ⊥ u.

Moreover, for any band L ⊂ E there holds f(x1, . . . , xk−1, xk, xk+1, . . . , xN ) ∈ L whenever
xk ∈ L. If L admits a band projection π, then

πf(x1, . . . , xk−1, xk, xk+1, . . . , xN ) = f(x1, . . . , xk−1, πxk, xk+1 . . . , xN ).

Now, we consider concrete examples of homogeneous functions.

2.6. Homogeneous functional calculus is used to introduce the so called p-convexification
and p-concavification procedures for a Banach lattice, see [17, 22]. Consider three functions
σα,N , σ

′
α,N : RN → R, and J : R2 → R defined by

σα,N (t1, . . . , tN ) := θ−1α (θα(t1) + . . .+ θα(tN )),

σ′α,N (t1, . . . , tN ) := θα(θ
−1
α (t1) + . . .+ θ−1α (tN )),

J(r, s) := θ−12 (rs) (r, s, t1, . . . , tN ∈ R),
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where 0 < α ∈ R and θα : t 7→ sgn(t)tα is an order preserving bijection of R. Ob-
viously, σα,N , σ′α,N belong to H (RN ) and J belongs to H (R2), so that σα,N (x1, . . . , xN ),
σ′α,N (x1, . . . , xN ), and J(x, y) are well defined for all x, y, x1, . . . , xN in a relatively uniformly
complete vector lattice E. From the above definitions the following implication is easily
deduced

(∀x, y ∈ E) |x| ∧ |y| = 0 ⇒ σα,2(x, y) = σ′α,2(x, y) = x+ y,

since it is true in the real context. Denote for brevity θ := θ2, σ= σ2,2, and σ′= σ′2,2.
Given a relatively uniformly complete vector lattice E := (E,+, ·,6) and 0 < α ∈ R, the

α-convexification E(α) of E is defined as the same underlying set equipped with the same
order and new vector operations

x+̃y := σ′α,2(x, y) := (x1/α + y1/α)α (x, y ∈ E),

λ ∗ x := θα(λ) · x := λα · x (λ ∈ R, x ∈ E),

so that E(α) := (E, +̃, ∗,6). Then E(α) is also a relatively uniformly complete vector lattice.
Moreover, E(1) = E, (E(α))(β) = E(αβ), and (E(α))(1/α) = E, where identities meant in the
sense of vector and lattice isomorphism, see [22, Proposition 4.8].

In particular, the square (E¯,¯) can be defined as E¯ := E(1/2) := (E, +̃, ∗,6) and ¯ := J ,
where x+̃y := σ(x, y), λ ∗ x := θ−1(λ)x, and 6 is the given ordering in E, see [9, Theorem 9].

2.7. We say that a function f ∈ H (RN ) is multiplicative or modulus preser-

ving if respectively f(s1t1, . . . , sN tN ) = f(s1, . . . , sN )f(t1, . . . , tN ) and f(|t1|, . . . , |tN |) =
|f(t1, . . . , tN )| for all s1, t1, . . . , sN , tN ∈ R. The general form of a nonzero positively
homogeneous multiplicative and modulus preserving function is given by

t1t2 · . . . · tN = 0 ⇒ f(t1, t2, . . . , tN ) = 0,

f(t1, . . . , tN ) = f(|t1|, . . . , |tN |) sgn f(t1, . . . , tN ),

f(|t1|, . . . , |tN |) = exp(g1(ln |t1|)) · . . . · exp(gN (ln |tN |)),

where g1, . . . , gN are some additive functions in R (i. e. solutions to Cauchy functional
equation, see [3]) with

∑N
i=1 gi = IR. In the case of continuous g1, . . . , gN we get a

Kobb–Duglas type function f and if, in addition, f is nonnegative, then f(t1, . . . , tN ) =
c|t1|

p1 · . . . · |tN |
pN with 0 6 c ∈ R, p1, . . . , pN ∈ R and

∑N
i=1 pi = 1. Therefore, the expression

|x1|
p1 · . . . · |xN |

pN is well defined in E for pk > 0, p1 + . . .+ pN = 1. Moreover,

|x1|
p1 · . . . · |xN |

pN 6 p1|x1|+ . . .+ pN |xN |

by the inequality between the weighted arithmetic and geometric means.

3. Gauges and Hölder type inequalities

Now we consider some interplay between the square of a vector lattice and homogeneous
functional calculus and deduce some Hölder type inequalities. In the sequel E denotes a
relatively uniformly complete vector lattice.

3.1. A gauge is a nonnegative sublinear function defined on a convex cone contained in
RN . The polar k◦ of a gauge k defined by

k◦(t) := inf{λ > 0 : (∀s ∈ RN )〈s, t〉 6 λk(s)} (y ∈ RN )
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is also a gauge. Moreover, k◦◦ := (k◦)◦ = k if and only if k is lower semicontinuous (for more
details see [20]).

A gauge k : RN → R is strictly positive provided that k(s) > 0 for every s 6= 0. Here we
consider only strictly positive gauges defined everywhere on RN . The totality of such gauges
on RN will be denoted by G (RN ). Every gauge from G (RN ) is continuous. The polar of a
gauge k ∈ G (RN ) is also contained in G (RN ) and can be calculate by

k◦(t) = sup
s6=0

〈s, t〉

k(s)
= sup{〈s, t〉 : k(s) 6 1} (t ∈ RN ).

Since G (RN ) ⊂ H (RN ), there exist k(x1, . . . , xN ) ∈ E and k◦(x1, . . . , xN ) ∈ E for any
x1, . . . , xN ∈ E. Moreover, the mapping (x1, . . . , xN ) 7→ k(x1, . . . , xN ) is a sublinear operator
from EN to E and

|k(x1, . . . , xN )− k(y1, . . . , yN )| 6 ‖k‖
N∨

i=1

|xi − yi|.

3.2. If k ∈ G (RN ) and x1, . . . , xN ∈ E, then the representation holds

k◦(x1, . . . , xN ) = sup

{
N∑

i=1

λixi : (λ1, . . . λN ) ∈ RN , k(λ1, . . . λN ) 6 1

}
.

Moreover, k◦(x1, . . . , xN ) is a relatively uniform limit of an increasing sequence which

is comprised of the finite suprema of linear combinations of the form
∑N

i=1 λixi with

k(λ1, . . . λN ) 6 1.

C Observe that the set U :=
{∑N

i=1 λixi : k(λ1, . . . λN ) 6 1
}

is norm totally bounded

in the AM -space Eu, u := |x1| ∨ . . . ∨ |xN |, since it is the image of the compact set {λ ∈
RN : k(λ) 6 1} under the map λ = (λ1, . . . , λN ) 7→

∑N
k=1 λixi. Denote by U∨ the subset

of E consisting of the suprema of the finite subsets of U . Then by Krengel’s Lemma (see [1,
Lemma 3.13]) y := supU exists in Eu and belongs to the norm closure U∨ of U∨. Since U∨ is
upward directed, U∨ is norm convergent to y. Therefore, for any R-valued homomorphism ω
on Eu we have

ω(y) = lim
u∈U∨

ω(u) = sup{ω(u) : u ∈ U∨} sup{ω(u) : u ∈ U} = k◦(ω(x1), . . . , ω(xN )).

Thus, y = k◦(x1, . . . , xN ) by [6, Corollary 3.4]. B

3.3. Take a gauge kp,N : (t1, . . . , tN ) 7→
(∑N

i=1 |ti|
p
) 1

p
with 1 6 p 6 ∞. For

the corresponding mapping from EN into E an expressive notation is used, see [17, 21, 22]:

(
n∑

i=1

|xi|
p

)1
p

:= kp,N (x1, . . . , xN ) (x1, . . . , xN ∈ E).

For p = ∞, we define kp,N (t1, . . . , tN ) = max
{
|ti| : i := 1, . . . , N

}
and, obviously,

kp,N (x1, . . . , xN ) = x1∨ . . .∨xN . Of course, kp,N ∈ H (RN ) and the mapping (x1, . . . , xN ) 7→
kp,N (x1, . . . , xN ) ∈ E is well defined even if 0 < p < 1, but in this case kp,N /∈ G (RN ) and the
corresponding mapping is not sublinear.
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3.3. If k ∈ G (RN ), x1, . . . , xN ∈ E, and T is a positive operator from E to a F , then

k(Tx1, . . . , TxN ) 6 T (k(x1, . . . , xN )).

and equality holds if T is a lattice homomorphism. The inequality can be derived from the
representation 3.2 using the same arguments as in 3.6 below. In particular, specializing k :=
kp,N with 1 6 p 6∞ yields

( n∑

k=1

|Txk|
p

)1
p

6 T

( n∑

k=1

|xk|
p

)1
p

and equality holds if T is a lattice homomorphism [17, 21]. On the contrary, if 0 < p < 1,
then

T

( n∑

k=1

|xk|
p

)1
p

6

( n∑

k=1

|Txk|
p

)1
p

.

A more general fact will be proved below in 4.3.

3.4. For any k ∈ G (RN ) and x1, . . . , xN , y1, . . . , yN ∈ E the inequality holds

N∑

i=1

xi ¯ yi 6 k(x1, . . . , xN )¯ k◦(y1, . . . , yN ).

C It is an easy exercise to check that the inequality (see 2.6 for definitions of σ2,N and J)

σ2,N
(
J(s1, t1), . . . , J(sN , tN )

)
6 J

(
k(s1, . . . , sN ), k◦(t1, . . . , tN )

)
.

is equivalent to the well known property of gauges [20]:

〈s, t〉 6 k(s)k◦(t) (s = (s1, . . . , sN ), t = (t1, . . . , tN ) ∈ RN ).

Combining this with 2.3 and 3.6 we obtain the desired inequality. B

In the special case of k := kp,N and k◦ = kq,N , 1 6 p, q 6∞, 1/p+ 1/q = 1, we have

N∑

i=1

|xi ¯ yi| 6

(
N∑

i=1

|xi|
p

) 1
p

¯

(
N∑

i=1

|yi|
q

) 1
q

.

3.5. If b : E × E → G is a positive orthosymmetric bilinear operator and xi, yi ∈ E,

i := 1, . . . , N , then

N∑

k=1

|b(xk, yk)| 6 b
(
k(x1, . . . , xN ), k◦(y1, . . . , yN )

)
.

C Apply Φb to 3.4 and use 1.3. B

Again, if 1 6 p, q 6 ∞ and 1/p+ 1/q = 1, then

N∑

k=1

|b(xk, yk)| 6 b



(

N∑

k=1

|xk|
p

)1
p

,

(
N∑

k=1

|yk|
q

)1
q


 .
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3.6. Let b : E × E → G be a positive orthosymmetric bilinear operator and b = Φb¯ for

a positive linear operator Φb from E¯ to G. Then for x1, y1, . . . , xN , yN ∈ E and k ∈ G (RN )
we have

k(b(x1, y1), . . . , b(xN , yN )) 6 Φb

(
k(x1 ¯ y1, . . . , xN ¯ yN )

)
.

In particular, if 1 6 p, q 6∞ and 1/p+ 1/q = 1, then

(
N∑

i=1

|b(xi, yi|)
p

)1
p

6 Φb



(

N∑

i=1

|xi ¯ yi|
p

)1
p


 .

C Taking into consideration 1.3, 3.2, and positivity of Φb we deduce

N∑

i=1

λib(xi, yi) = Φb

(
N∑

i=1

λixi ¯ yi

)
6 Φb

(
k(x1 ¯ y1, . . . , xN ¯ yN )

)

for any finite collection λ1, . . . λN ∈ R with k◦(λ1, . . . λN ) 6 1. It remains to apply 3.2 again. B

3.7. If in 3.6 b is a symmetric lattice bimorphism, then

k(b(x1, y1), . . . , b(xN , yN )) = Φb

(
k(x1 ¯ y1, . . . , xN ¯ yN )

)
.

In particular, if 1 6 p, q 6∞ and 1/p+ 1/q = 1, then we have

(
N∑

i=1

|b(xi, yi|
p

)1
p

= Φb



(

N∑

i=1

|xi ¯ yi|
p

)1
p


 .

C Since Φb is a lattice homomorphism by 1.2, we only need to apply 2.4 and 1.3. B

4. Inequalities with monomials

In this section we prove several inequalities containing homogeneous expressions of the
form |x1|

p1 · . . . · |xN |
pN with p1 + . . .+ pN = 1, see 2.7.

4.1. Assume that a homogeneous function f ∈ H (RN ) is multiplicative and modulus

preserving. Then for all x1, y1, . . . , xN , yN ∈ E we have

f(x1 ¯ y1, . . . , xN ¯ yN ) = f(x1, . . . , xN )¯ f(y1, . . . , yN ).

In particular, if 0 6 p1, . . . , pN ∈ R, p1 + . . .+ pN = 1, then

N∏

i=1

|xi ¯ yi|
pi =

( N∏

i=1

|xi|
pi

)
¯

( N∏

i=1

|yi|
pi

)
.

C If f is multiplicative and modulus preserving, then θ(f(s1, . . . , sN )) =
f(θ(s1), . . . , θ(sN )) and the equality f ◦ (J × . . .× J) = J ◦ (f × f) holds, see 2.6. Applying
2.3 and 2.6 we come to the desired inequalities. B

4.2. Theorem (The generalized Hölder inequality). Assume that E and G be relatively

uniformly complete vector lattices. If a mapping f : E+ → G is increasing and sublinear(
f(x+ y) 6 f(x) + f(y), f(λx) = λf(x); x, y ∈ E, 0 < λ ∈ R

)
, then

f

( N∏

i=1

|xi|
pi

)
6

N∏

i=1

f(|xi|)
pi
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for x1, . . . , xN ∈ E and 0 6 p1, . . . , pN ∈ R with p1+. . .+pN = 1. Equality holds if f : E → G
is lattice homomorphism.

C Without loss of generality we may assume that 0 6 xi and 0 < pi < 1 for all i :=
1, . . . , N . Indeed, if {i1, . . . , ik} = {j 6 N : pj 6= 0}, then |x1|p1 · . . . · |xN |

pN = |xi1 |
pi1 · . . . ·

|xik |
pik . Now we observe that, for 0 6 x, y ∈ E and 0 < p < 1, the equality holds

xpy1−p = inf{pλ1/px+ (1− p)λ−1/(1−p)y : 0 < λ ∈ Q}.

Indeed, by 2.6 for an arbitrary 0 < λ ∈ R the inequality is valid:

xpy1−p =
(
λ1/px

)p(
λ−1/(1−p)y

)1−p
6 pλ1/px+ (1− p)λ−1/(1−p)y.

Assume that v 6 ϕλ := pλ1/px+ (1− p)λ−1/(1−p)y for all 0 < λ ∈ Q. Actually this inequality
is true for all 0 < λ ∈ R, since |ϕλ−ϕµ| 6 C(ε)|λ−µ|(x+y) whenever 0 < ε < λ, µ < 1/ε. By
the Krĕıns–Kakutani Representation Theorem we can view the principal ideal Eu generated
by u = x+y+ |v| as C(S) for some compact space S. Then v, x, y, ϕλ, and xpy1−p lie in C(S)
and for 0 < λ ∈ R the pointwise inequality v(s) 6 ϕλ(s) is true. If x(s) = 0, then trivially

v(s) 6 inf
{
(1− p)λ−1/(1−p)y(s) : 0 < λ ∈ Q

}
= 0 = x(s)py(s)1−p.

If x(s) 6= 0, then for λ := (y(s)/x(s))p(1−p) we have ϕλ(s) = x(s)py(s)1−p > v(s). Thus,
v 6 xpy1−p and the desired representation for xpy1−p follows.

Now, taking into consideration that f is sublinear and increasing, we deduce

f(xpy1−p) 6 inf
{
f(pλ1/px+ (1− p)λ−1/(1−p)y) : 0 < λ ∈ Q

}

6 inf
{
pλ1/pf(x) + (1− p)λ−1/(1−p)f(y) : 0 < λ ∈ Q

}
= f(x)pf(y)1−p.

The general case is handled by induction. Suppose f
(
xq11 · . . . · x

qN−1

N−1

)
6 f(x1)

q1 · . . . ·
f(xN−1)

qN−1 , whenever q1 + . . . + qN−1 = 1. Put p := p1 + . . . + pN−1, qi := pi/p

(i := 1, . . . , N − 1), and u :=
(
xp1
1 · . . . · x

pN−1

N−1

)1/p
= xq11 · . . . · x

qN−1

N−1 . Then

f
(
xp1
1 · . . . · x

pN
N

)
= f(upxpNN ) 6 f(u)pf(xN )pN

= f
(
xq11 · . . . · x

qN−1

N−1

)p
f(xN )pN 6 f(x1)

p1 · . . . · f(xN )pN ,

and the required inequality follows. The remaining part is obvious. B

4.3. Theorem (The generalized Minkowski inequality). Assume that E, G, f , and

x1, . . . , xN are the same as in 4.2 and 0 < p < 1. Then the inequality holds:

f

(( N∑

i=1

|xi|
p

)1/p)
6

( N∑

i=1

(f(|xi|))
p

)1/p
.

Equality holds if f : E → G is a lattice homomorphism.

C The same line of reasoning as in 4.4 works. We may assume without loss of generality
that xi > 0 i := 1, . . . , N . First we prove that, for 0 6 x, y ∈ E and 0 < p < 1, the
representation holds

(xp + yp)1/p = inf{λ−1/px+ (1− λ)−1/py : 0 < λ < 1, λ ∈ Q}.
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Next, applying f to this equality and taking into account that f is increasing and sublinear
we deduce

f
(
(xp + yp)1/p

)
6
(
f(x)p + f(y)p

)1/p
.

The general case is again settled by induction. Put u :=
(
xp1+ . . .+x

p
N−1

)1/p
and observe that

(
up + xpN

)1/p
=
(
xp1 + . . .+ xpN

)1/p
.

Moreover, by induction f(u) 6
(
f(x1)

p + . . .+ f(xN−1)
p
)1/p

. Thus

f
(
(xp1 + . . .+ xpN )1/p

)
= f

(
up + xpN

)1/p

6
(
f(u)p + f(xN )p

)1/p
6
(
f(x1)

p + . . .+ f(xN )p
)1/p

and we are done. B.

4.4. We can take in 4.2 an arbitrary increasing gauge k ∈ G (RM ) instead of f and
consider the corresponding sublinear operator from EM to E. Suppose that M ∈ N and for
every j := 1, . . . ,M a finite collection of elements (x1j , . . . , xNj) ∈ E

M is given. Replacing f ,
for example, by kp,M (1 6 p 6∞) we arrive at the following version of Hölder inequality:

( M∑

j=1

(
|x1j |

p1 · . . . |xpNNj |
)p)1/p

6

( M∑

j=1

|x1j |
p

)p1/p

· . . . ·

( M∑

j=1

|xNj |
p

)pN/p

.

4.5. Let (Ω,Σ, µ) be a measure space with a σ-finite positive measure µ and F be a Banach
lattice. Let L 1(Ω,Σ, µ, F ) be the space of all Bochner integrable functions on Ω with values
in F and E := L1(µ, F ) := L (Ω,Σ, µ, F )/ ∼ denotes the space of all equivalence classes (of
almost everywhere equal) functions from L 1(Ω,Σ, µ, F ). Then E = L1(µ, F ) is also a Banach
lattice and hence f(x1, . . . , xN ) is well defined in E for f ∈ H (RM ) and x1, . . . , xN ∈ E.
Denote by x̃ the equivalence class of x ∈ L 1(Ω,Σ, µ, F ). Making use of the continuity of
functional calculus (see [9, Theorem 7]) one can deduce that the equality f(x̃1, . . . , x̃N )(ω) =
f(x1(ω), . . . , xN (ω)) is true for almost all ω ∈ Ω

(
or more precisely f(x̃1, . . . , x̃N )(ω) is the

equivalence class of the measurable function ω 7→ f(x1(ω), . . . , xN (ω))
)

for any finite collection
x1, . . . , xN ∈ L 1(Ω,Σ, µ, F ). Since the Bochner integral defines a linear and increasing
operator from E to F , we can replace f in 4.2 and 4.3 by the Bochner integral. Thus, we get
the following inequalities (0 6 p1, . . . , pN ∈ R, p1 + . . .+ pN = 1, 0 < p < 1):

∫

Ω

( N∏

i=1

|xi(ω)|
pi

)
dµ(ω) 6

N∏

i=1

(∫

Ω

|xi(ω)| dµ(ω)

)pi

,

∫

Ω

( N∑

i=1

|xi(ω)|
p

)1/p
dµ(ω) 6

( N∑

i=1

(∫

Ω

|xi(ω)| dµ(ω)

)p)1/p

for x1(·), . . . , xN (·) ∈ L 1(Ω,Σ, µ, F ).

4.6. Let E, F , and G be relatively uniformly complete vector lattices, f, g : E+ → F
be ingreasing sublinear operators, and b : F × F → G be a positive orthosymmetric bilinear

operator. Then

b

(
f

( N∏

i=1

|xi|
pi

)
, g

( N∏

i=1

|yi|
pi

))
6

N∏

i=1

b
(
f(|xi|), g(|yi|)

)pi .
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for all x1, y1, . . . , xN , yN ∈ E and 0 6 p1, . . . , pN ∈ R with p1 + . . .+ pN = 1. Equality holds

if f, g : E → F are lattice homomorphisms and b is a symmetric lattice bimorphism.

C By applying 4.2 to f and g and using 4.1 we obtain

f

( N∏

i=1

|xi|
pi

)
¯ g

( N∏

i=1

|yi|
pi

)
6

N∏

i=1

(
f(|xi|)¯ g(|yi|)

)pi .

Now, apply Φb to the last inequality, use again 4.2 with f := Φb, and take 1.3 into account. If
f and g are lattice homomorphisms and b is a lattice bimorphism, then we apply 2.4 and 4.1
and observe that, according to 1.2, Φb is a lattice homomorphism if and only if b is a lattice
bimorphism. B

4.7. Remarks 1. The generalized Hölder inequalities 4.2 for increasing sublinear operator
between relatively uniformly complete vector lattices was obtained in [16, Theorem 5.2]. Both,
the generalized Hölder and Minkowski inequalities 4.2 and 4.3 for operators between spaces
of measurable functions were established in [12, Remark 1.2 (5)] and [12, Remark 1.2 (6)].

2. In [10] and [11] some interesting estimates for the Hadamard weighted geometric means
of positive kernel operators on Banach function spaces were obtained. Hölder type inequalities
for operators can be useful in such studies. For example, the inequalities (1) of [11, Theorem
2.1] and (4) of [11, Theorem 2.2] are the easy consequences of 4.2 (f(k) := ‖K‖) and 4.6
(b(H,K) := H ·K, f(h) := H, g(k) := K), respectively. More applications see in [12] and [16].

3. In [12, Proposition 1.1] a Jensen type convexity inequality for sublinear operator on
spaces of measurable functions was proved. (The scalar case see in [5, § I.1, Proposition 1].)
Certainly, this result can be generalized to operators on vector lattice so that 4.2 and 4.3
will become its special cases. The corresponding improved version of homogeneous functional
calculus on vector lattice will be developed in a forthcoming paper.
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