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GENERALIZATION OF EBERLEIN’S AND
SINE’S ERGODIC THEOREMS TO LR-NETS

E. Yu. Emel’yanov, N. Erkursun

The notion of LR-nets provides an appropriate setting for study of various ergodic theorems in Banach
spaces. In the present paper, we prove Theorems 2.1, 3.1 which extend Eberlein’s and Sine’s ergodic
theorems to LR-nets. Together with Theorem 1.1, these two theorems form the necessary background
for further investigation of strongly convergent LR-nets. Theorem 2.1 is due to F. Räbiger, and was
announced without a proof in [1].
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1. Basic definitions and examples

1.1. In the following, let X be a Banach space, L (X) be the space of all bounded linear
operators in X, and I = IX be the identity operator in X. Recall that a family Π = (Tυ)υ∈Υ ⊆
L (X) indexed by a directed set Υ is called an operator net. We say that a vector x is fixed

under the net Π if Tυx = x for every Tυ ∈ Π, and denote by Fix(Π) the set of all fixed vectors
of Π. It is easy to see that Fix(Π) is a closed subspace in X. In the following, we call Fix(Π)
the fixed space of Π. The net Π is called equi-continuous if sup

υ∈Υ
‖Tυ‖ < ∞. Remark that this

approach to notions of a fixed space and of an equi-continuity of an operator net is not unique
one. The net Π is called strongly convergent if the norm-limit lim

υ→∞
Tυx exists for each x. The

next definition extends the notion of an attractor, previously known for directed operator
semigroups, to operator nets.

Definition 1.1. Let Π = (Tυ)υ∈Υ be an operator net in X, and let A ⊆ X. The set A is
called an attractor for Π if

lim
υ→∞

dist‖·‖(Tυx A) = 0 (∀x ∈ X ‖x‖ 6 1).

1.2. The next principal concept has been introduced by F. Räbiger [1] under the name M -

net. It was motivated by the classical notion of T -ergodic net for an operator semigroup T ,
and by the notion of M -sequence introduced by H. P. Lotz [2]. We prefer to use the term
Lotz-Räbiger net for this notion.

Definition 1.2. An operator net Φ = (Sλ)λ∈Λ in X is called a Lotz-Räbiger net (=LR-

net) if
(LR 1) Φ is equi-continuous and
(LR 2) lim

λ→∞
Sλ ◦ (Sµ − I)x = 0 = lim

λ→∞
(Sµ − I) ◦ Sλx for all x ∈ X and µ ∈ Λ.
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Remark that the adjoint net to an LR-net is not necessary an LR-net. Any Lotz-Räbiger
net enjoys the following simple property.

Proposition 1.1. Let Φ = (Sλ)λ∈Λ be an LR-net in X and x ∈ X. Then x ∈ Fix(Φ) if

and only if there exists λ(x) ∈ Λ satisfying Sλ(x) = x for all λ > λ(x).

C The necessity is obvious. To prove sufficiency, take an element x ∈ X satisfying Sλ(x) =
x for all λ > λ(x). Let ϑ be an arbitrary element of Λ. Accordingly with the condition (LR 2),
and to the continuity of (Sϑ − I) we obtain

(Sϑ − I) ( lim
λ→∞

Sλx) = lim
λ→∞

(Sϑ − I) ◦ Sλx = 0.

The equality lim
λ→∞

Sλx = x holds by the assumption, since Sλx = x for all λ > λ(x). Therefore

(Sϑ − I)x = 0 for all ϑ ∈ Λ or, equivalently, x ∈ Fix(Φ). B

1.3. The following elementary result explains the relationship between the strong
convergence and the fixed space of an LR-net. Remark that Propositions 1.1 and 1.2 cannot
be extended to an arbitrary equi-continuous operator net.

Proposition 1.2. Let Θ = (Tλ)λ∈Λ be an LR-net in X. Then Θ is strongly convergent if

and only if

X = Fix(Θ)⊕ span
⋃

λ∈Λ

(I − Tλ)X. (1)

Moreover, in this case, the strong limit P of Θ is a projection onto Fix(Θ).

C The sufficiency. Assume X = Fix(Θ) ⊕ span
⋃
λ∈Λ(I − Tλ)X. The net Θ is equi-

continuous. Therefore, to show that Θ converges strongly, it is enough to prove that the
norm-limit lim

λ→∞
Tλx exists for all x ∈ (I − Tµ)X, where µ is an arbitrary element of Λ. Fix a

µ ∈ Λ and an x ∈ (I−Tµ)X. Thus x = (Tµ−I)v for some v ∈ X. Now, the norm-convergence
of the net (Tλ x)λ∈Λ is provided by (LR 2), since

lim
λ→∞

Tλx = lim
λ→∞

Tλ ◦ (Tµ − I)v = 0. (2)

The necessity. Assume Θ is strongly convergent. Then the strong limit P of Θ is a
continuous operator. Take an x ∈ X. In view of (LR 2), we have

Tµ(Px)− Px = (Tµ − I) lim
λ→∞

Tλx = lim
λ→∞

(Tµ − I) ◦ Tλx = 0

for every µ ∈ Λ. Hence, Px ∈ Fix(Θ) and P 2x = Px. By arbitrariness of x, P is a continuous
projection onto Fix(Θ), henceforth X = P (X) ⊕ kerP and P (X) = Fix(Θ). Thus, to show
X = Fix(Θ)⊕ span

⋃
λ∈Λ(I − Tλ)X it is enough to prove

span
⋃

λ∈Λ

(I − Tλ)X = kerP. (3)

The inclusion span
⋃
λ∈Λ(I − Tλ)X ⊆ kerP follows from (2). Assume x ∈ kerP . Then

lim
λ→∞

Tλx = Px = 0 and

x = lim
λ→∞

(I − Tλ)x ∈
⋃

λ∈Λ

(I − Tλ)X ⊆ span
⋃

λ∈Λ

(I − Tλ)X.

This proves the equality (3) and therefore the required decomposition X = Fix(Θ) ⊕
span

⋃
λ∈Λ(I − Tλ)X. B
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1.4. Many concrete examples of LR-nets appear naturally in the investigation of operator
semigroups. Every equi-continuous strongly convergent directed semigroup T ⊆ L (X) is an
LR-net. We refer for examples of LR-nets to the papers [2] and [1] of Lotz and Räbiger, and
to the Krengel book [3]. Here we mention only a few of them.

Example 1.1. Let T ∈ L (X) be an operator in X satisfying n−1Tn → 0 strongly, with

the uniformly bounded sequence of Cesàro averages A T
n := 1

n

n−1∑
k=0

T k. It is well known that

(A T
n )∞n=1 satisfies (LR 2) and therefore becomes an LR-net. The continuous version of this

LR-net is obvious.

Example 1.2. Every T -ergodic net for a given operator semigroup T ⊆ L (X) (see [3,
p. 75] for the definition) is an LR-net. This extends the previous example.

It can be easily shown [3, p. 75] that every equi-continuous Abelian operator semigroup
T admits a T -ergodic net. We emphasize that not every LR-net can be represented as a
T -ergodic net for some semigroup T .

Example 1.3. Let Λ ⊆ C be a directed set and let (Rλ)λ∈Λ ⊆ L (X) be a pseudoresolvent,
i.e. satisfies the Hilbert identity Rλ−Rµ = (µ−λ)Rλ◦Rµ for all λ, µ ∈ Λ. Let the net (λRλ)λ∈Λ
be equi-continuous.

(a) If lim
λ→∞

λ = a ∈ C then ((λ− c)Rλ)λ∈Λ is an LR-net.

(b) If lim
λ→∞

|λ| =∞ then (I − λRλ)λ∈Λ is an LR-net.

2. Extension of Eberlein’s theorem to LR-net

2.1. A lot of results about concrete LR-nets, mentioned in subsection 1.4 , belongs
to the classical ergodic theory. However, only very few facts about general LR-nets, like
Propositions 1.1, 1.2, are known. For instance, Theorem 2.1 below is well know more than
sixty years for LR-nets of Cesàro averages as the Mean Ergodic Theorem, and for T -ergodic
nets it is known as the Eberlein Theorem. Theorem 2.1 had been proved for M -sequences by
Lotz in [2, Theorem 3]. The general form of Theorem 2.1 had been stated, without a proof, by
Räbiger in [1, Proposition 2.3]. In this section, we present the complete proof of this result.

Theorem 2.1 (Räbiger). Let Θ = (Tλ)λ∈Λ be an LR-net in X. Then the following

assertions are equivalent:
(i) Θ is strongly convergent.

(ii) The net (Tλx)λ∈Λ has a weak cluster point for every x ∈ X.

C The implication (i)⇒ (ii) is obvious.
(ii)⇒ (i) : Let x ∈ X be an arbitrary element, and let y be a weak cluster point of the

set (Tλx)λ∈Λ. By the Mazur theorem,

y ∈ co(Tλx)λ∈Λ. (4)

(I) Firstly, we show that y ∈ Fix(Θ). It is sufficient to prove that, for arbitrary µ ∈ Λ and
ε > 0,

|〈Tµy, h〉 − 〈y, h〉| 6 ε (5)

holds. Fix a µ ∈ Λ and an ε > 0. Since y is a weak cluster point of the LR-net (Tλx)λ∈Λ,
there exists a ζ ∈ Λ satisfying the following three formulas:
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|〈Tµ y, h〉 − 〈Tµ ◦ Tζ x, h〉| 6
ε

3
, (6)

|〈Tµ ◦ Tζ x, h〉 − 〈Tζ x, h〉| 6
ε

3
, (7)

|〈Tζ x, h〉 − 〈y, h〉| 6
ε

3
. (8)

The summation of (6), (7), and (8), gives (5). Therefore y ∈ Fix(Θ).

(II) Now we prove that the net (Tλx)λ∈Λ converges in the norm to y. The supremum
M := supλ∈Λ ‖Tλx‖ is finite since the net Θ is equi-continuous. Fix an ε > 0. By (4), there
exists an S ∈ co(Tλ)λ∈Λ satisfying

‖y − Sx‖ 6 ε. (9)

By (LR 2), we have
lim
λ→∞

Tλ ◦ (S − I)x = 0. (10)

In view of (10), there exists a λ0 ∈ Λ (which depends on x and ε) satisfying

‖Tλ ◦ S x− Tλ x‖ 6 ε (∀λ > λ0). (11)

The combining of (9) and (11) with y ∈ Fix(Θ) (this was proved in (I)), gives us

‖y − Tλx‖ = ‖y − Tλ ◦ S x+ Tλ ◦ S x− Tλx‖ 6

‖Tλ(y − S x)‖+ ‖Tλ ◦ S x− Tλx‖ 6 Mε+ ε (∀λ > λ0). (12)

Since x ∈ X and ε > 0 were chosen arbitrary, the formula (12) implies that the net Θ
converges strongly. B

2.2. It follows immediately from Theorem 2.1 and Definition 1.1, that every LR-net
possessing a weakly compact attractor is strongly convergent. This property explains a big
difference between the strong convergence of semigroups and the strong convergence of LR-
nets. A principal source of this difference consists in the fact that not every bounded operator
semigroup is an LR-net. Another important difference consists in the fact that the convex
hull of any semigroup T ⊆ L (X) is always a semigroup, but the convex hull of an LR-net is
not always an LR-net.

3. Extension of Sine’s theorem to LR-nets

3.1. In this section we present an extension of Sine’s ergodic theorem to LR-nets. This
theorem was discovered by R. Sine in the special case when an LR-net is a net of Cesàro
averages of a single operator (cf. Krengel’s book [3, Theorem 2.1.4]). It was extended to
arbitrary T -ergodic nets, by J.J. Koliha, R. Nagel, and R. Sato [3, Theorem 2.1.9]. For
“small” LR-nets (=M -sequences) it is due to H.P. Lotz [2, Theorem 3].

Theorem 3.1. An LR-net Θ = (Tλ)λ∈Λ in X is strongly convergent if and only if its fixed

space Fix(Θ) separates the fixed space Fix(Θ∗) of the adjoint operator net Θ∗ = (T ∗λ )λ∈Λ
in X∗.
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C Assume that Fix(Θ) separates Fix(Θ∗). In view of Proposition 1.2, to show the strong
convergence of Θ, it suffices to prove (1). If (1) is failed then, by the Hahn – Banach theorem,
there exists an h ∈ X∗, h 6= 0, with 〈x, h〉 = 0 for all

x ∈ Fix(Θ)⊕ span
⋃

λ∈Λ

(I − Tλ)X.

Show that h ∈ Fix(Θ∗). Since

(y − Tµy) ∈ span
⋃

λ∈Λ

(I − Tλ)X (∀y ∈ X , ∀µ ∈ Λ) ,

we have
〈y, h〉 = 〈Tµy, h〉 = 〈y, T

∗
µh〉 = 0 (∀y ∈ X , ∀µ ∈ Λ). (13)

It follows from (13) that T ∗µh = h for all µ ∈ Λ and therefore h ∈ Fix(Θ∗). Thus, h is a nonzero
fixed point of Θ∗ such that 〈x, h〉 = 0 for all x ∈ Fix(Θ). This contradicts the assumption.

Assume the net Θ converges strongly, and denote its limit in the strong operator topology
by P . Take an h ∈ Fix(Θ∗), h 6= 0. In view of h 6= 0, there exists an x ∈ X with 〈x, h〉 6= 0.
Consequently

〈Px, h〉 = lim
λ→∞

〈Tλx, h〉 = lim
λ→∞

〈x, T ∗λh〉 = 〈x, h〉 6= 0. (14)

Since Px ∈ Fix(Θ), the formula (14) shows that Fix(Θ) separates Fix(Θ∗). B
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