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In this paper we study some important structural properties of orthosymmetric bilinear operators using
the concept of the square of an Archimedean vector lattice. Some new results on extension and analytical
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Introduction

Recently the class of orthosymmetric bilinear operators in vector lattices, introduced in
[12], has aroused considerable interest. This is due to the study of lattice ordered algebras
[4, 11, 12, 29], Hilbert lattices [17], various structural properties of positive bilinear [8, 14, 24,
25, 26] and multilinear [5, 6] operators, etc. A number of important properties of such operators
was revealed. For example, a positive orthosymmetric bilinear operator is symmetric [12] and
every positive orthosymmetric bilinear operator defined on a sublattice of an f -algebra can be
factored through a positive linear operator and the algebra multiplication [11, 12, 29]. These
results gave rise to the concept of the square of a vector lattice, developed in [13].

This paper is a continuation of [6, 11, 12, 13, 24, 25, 28]2. A general idea behind the paper
can be stated as follows: In the theory of orthosymmetric bilinear operators, the role played by
the square of an Archimedean vector lattice is as important as that of Fremlin’s tensor product
of Archimedean vector lattices in the theory of bilinear operators, see [25]. In particular, the
square of a vector lattice possesses the following universal property: On every Archimedean
vector lattice there exists a unique symmetric lattice bimorphism with values in the square
of the initial vector lattice, similar to f -algebra multiplication, such that an arbitrary regular
orthosymmetric bilinear operator defined on this vector lattice and with values in a uniformly
complete vector lattice is representable as a composition of the said bimorphism and some
regular linear operator uniquely defined on the square [24]. This approach allows us to improve
and systematize some known results as well as to obtain several new facts on extension and
analytical representation of orthosymmetric bilinear operators.

For the theory of vector lattices and positive operators we refer to the books [2] and [23].

c© 2007 Buskes G., Kusraev A. G.
1The author is supported by a grant from Russian Foundation for Basic Research, project № 06-01-00622.
2The second named author regrets neglecting mention of [13] and [7] in [25] and [28], respectively.
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1. Prerequisites

In this section we fix the notation and terminology and outline some results needed in the
sequel. Throughout this paper a vector lattice means an Archimedean vector lattice over the
field of real numbers.

1.1. Let E, F , and G be vector lattices. A bilinear operator b : E × F → G is called
positive if b(x, y) > 0 for all 0 6 x ∈ E and 0 6 y ∈ F , and regular if it can be represented
as a difference of two positive bilinear operators. The set BLr(E,F ;G) of all regular bilinear
operators from E×F to G serves as an ordered vector space if an order relation is defined by
the cone of positive bilinear operators BL+(E,F ;G). This space is an order complete vector
lattice provided that G is order complete, see [14, 22, 26].

A bilinear operator b is said to be lattice bimorphism if the mappings bx : y′ 7→ b(x, y′)
(y′ ∈ F ) and by : x′ 7→ b(x′, y) (x′ ∈ E) are lattice homomorphisms for all 0 6 x ∈ E and
0 6 y ∈ F , see [16].

The following fundamental result was established by D. Fremlin in [16].

1.2. Theorem. Let E and F be vector lattices. Then there is a unique up to isomorphism
vector lattice E ⊗ F and a vector bimorphism φ : E × F → E ⊗ F such that:

(1) whenever G is a vector lattice and ψ : E × F → G is a lattice bimorphism, there is a
unique lattice homomorphism T : E ⊗ F → G with T ◦ φ = ψ;

(2) φ induces an embedding of the algebraic tensor product E ⊗ F into E ⊗ F ;

(3) E⊗F is dense in E⊗F in the sense that for every v ∈ E⊗F there exist x0 ∈ E and
y0 ∈ F such that for every ε > 0 there is an element u ∈ E ⊗ F with |v − u| 6 εx0 ⊗ y0;

(4) if 0 < v ∈ E ⊗ F , then here exist x ∈ E+ and y ∈ F+ with 0 < x⊗ y 6 v.
The lattice bimorphism φ from the theorem is conventionally denoted by ⊗ and the

algebraic tensor product E ⊗ F is regarded as actually embedded in E ⊗ F .

1.3. Let ψ and T be the same as in the statement of Theorem 1.2 (1). Suppose that for
any x ∈ E+ and y ∈ E+ the equality ψ(x, y) = 0 implies x = 0 or y = 0. In this case T is
injective and thus maps E ⊗ F onto a vector sublattice of G generated by imψ := ψ(E × F ).
In particular, if E0 and F0 are vector sublattices in E and F , respectively, then the tensor
product E0⊗F0 is isomorphic to the vector sublattice in E⊗F generated by E0⊗F0, see [16].
Therefore, E0 ⊗ F0 is regarded as a vector sublattice of E ⊗ F . Moreover, as it is seen from
1.2 (3), E0⊗F0 is a majorizing sublattice provided that E0 and F0 are majorizing sublattices.

D. Fremlin [16] proved also the following important universal property of the tensor
product of vector lattices.

1.4. Theorem. Let E, F , and G be vector lattices with G relatively uniformly complete.
Then for every positive bilinear operator b : E × F → G there exists a unique positive linear
operator T : E ⊗ F → G such that T⊗ = b.

It follows, in particular, that for the same E, F , and G the mapping T 7→ T⊗ is an
isomorphism of ordered vector spaces Lr(E⊗F,G) and BLr(E,F ;G), where Lr(H,G) stands
for the space of all linear regular operators from H to G. More generally, the same relationship
holds between the spaces of order bounded linear operators from E ⊗ F to G and bilinear
operators of order bounded variation from E × F to G, see [14]. (The definition of bilinear
operator of order bounded variation see below in 3.3).

Thus, the Fremlin’s tensor product lends itself to a transfer of known results on regular
linear operators to regular bilinear operators as well as on order bounded linear operators
to bilinear operators of order bounded variation. This and certain other aspects of bilinear
operators on products of vector lattices are presented in the forthcoming survey paper [9].
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1.5. A bilinear operator b : E × E → G is said to be orthosymmetric if x ⊥ y implies
b(x, y) = 0 for arbitrary x, y ∈ E, see [12]. Recall that x ⊥ y means |x| ∧ |y| = 0. The
difference of two positive orthosymmetric bilinear operators is called orthoregular. Denote by
BLor(E,G) the space of all orthoregular bilinear operators from E × E to G ordered by the
cone of positive orthosymmetric operators.

Let X be a vector space. A bilinear operator b : X ×X → G is said to be symmetric if
b(x, y) = b(y, x) for all x, y ∈ X, positively semidefinite if b(x, x) > 0 for every x ∈ X, and
positively definite if it is positively semidefinite and b(x, x) = 0 implies x = 0. It can easily
be seen that an orthosymmetric positive bilinear operator is positively semidefinite [17]. More
subtle is the fact that any orthosymmetric positive bilinear operator is symmetric, see [12,
Corollary 2]. The following lemma, obtained in [24], is crucial.

1.6. Assume that a positive linear operator T : E ⊗ E → G is such that the bilinear
operator T⊗ : E ×E → G is orthosymmetric. If Tu > 0 for some 0 6 u ∈ E ⊗E then there
is an element e ∈ E with 0 < e⊗ e 6 u.
C We briefly sketch the proof. By virtue of 1.2 (3) there exists e0 ∈ E+ with u 6 e0 ⊗ e0.

Let E0 be the order ideal in E generated by e0. Then E0 ⊗ E0 is the sublattice of E ⊗ E
generated by E0⊗E0 (see 1.3). Now, if T0 is the restriction of T to E0⊗E0 then the bilinear
operator b0 := T0⊗ : E0 × E0 → G is positive and orthosymmetric. One can consider E0 as
a uniformly closed sublattice of C(Q) containing constants and separating points for some
Hausdorff compact spaces Q. As was shown in [27, Proposition 1.7], there is a countable
additive positive quasiregular Borel measure µ on Q with values in the Dedekind completion
Ĝ such that

b0(x, y) =

∫

Q×Q

x(s)y(t) dµ(s, t) (x, y ∈ E0).

Moreover, µ(Q × Q \ ∆) = 0 where ∆ := {(q, q) : q ∈ Q}. It follows that if a function
u ∈ E0 ⊗E0 vanishes on ∆ then Tu = 0, which contradicts to the hypotheses Tu > 0. Thus,
u(q, q) > 0 for some q ∈ Q. Employing the Uryson Lemma one can choose a continuous
function x : Q→ [0, 1] and a real 0 < ε with εx⊗x 6 u. Since E0 is uniformly dense in C(Q),
there is a function e ∈ E0 such that 0 < e 6 εx, from which 0 < e⊗ e 6 u. B

1.7. For any lattice bimorphism b : E × E → F the following are equivalent:
(1) b is symmetric;
(2) b is orthosymmetric;
(3) b is positively semidefinite.

C If b is symmetric then b(x+, x−) and b(x−, x+) coincide. At the same time these elements
are disjoint, since b(x+, x−) 6 b(x+, |x|), b(x−, x+) 6 b(x−, |x|) and b(x+, |x|)∧b(x−, |x|) = 0.
Thus, b(x+, x−) = b(x−, x+) = 0, from which the implication (1) → (3) follows. In addition,
(3) → (2) was observed in [24, Lemma 1] and (2) → (1) follows from [12, Corollary 2]. B

1.8. Let A be an f -algebra with a multiplication · and E be a sublattice of A. Denote by
E(2) the linear hull of E · E := {x · y : x, y ∈ E}. If E is relatively uniformly complete then
E(2) is a vector lattice and E(2) = E · E.

C This fact was proved in [11, Lemma 8]. B

2. Canonical bimorphism

This section deals with the existence and some nice properties of the square of a vector
lattice. For completeness sake we reproduce some proofs from [13].
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2.1. Theorem. For an arbitrary vector lattice E there exists a vector lattice E¯ (unique
up to isomorphism) and a lattice bimorphism ¯ : (x, y) 7→ x¯ y from E ×E to E¯ such that
the following hold:

(1) if b is a symmetric lattice bimorphism from E×E to some vector lattice F then there
is a unique lattice homomorphism Φb : E

¯ → F with b = Φb¯;
(2) given an arbitrary u ∈ E¯, there is e0 ∈ E+ such that, for every ε > 0, one can choose

x1, . . . , xn, y1, . . . , yn ∈ E with
∣∣∣∣∣u−

n∑

i=1

xi ¯ yi

∣∣∣∣∣ 6 εe0 ¯ e0;

(3) for any x, y ∈ E we have x¯ y = 0 if and only if x ⊥ y;
(4) given an element 0 < u ∈ E¯, there exists e ∈ E+ with 0 < e¯ e 6 u.
C Denote by J the smallest relatively uniformly closed order ideal in the tensor product

E⊗E containing the set {x⊗y : x, y ∈ E, x ⊥ y}. Define E¯ := E⊗E/J just as in [13]. Let φ :
E⊗E → E¯ be the quotient homomorphism and denote¯ := φ⊗. Then E¯ is an Archimedean
vector lattice and ¯ is a lattice bimorphism. Observe that ¯ is orthosymmetric. Indeed, if
x ⊥ y then x⊗y ∈ J = ker(φ), thus x¯y = φ(x⊗y) = 0. We now demonstrate the assertions
(1–4).

(1): We repeat the arguments from [13, Theorem 4]. Let b be a symmetric bimorphism
from E × E to a vector lattice F . Then b is orthosymmetric by virtue of 1.7. According to
1.2 (1) there is a unique lattice homomorphism S : E ⊗ E → F with b = S⊗. The set ker(S)
contains all elements of the form x⊗ y with x ⊥ y as the operator b is orthosymmetric. Since
ker(S) is a relatively uniformly closed order ideal, we have J ⊂ ker(S). The existence of a
linear operator Φb : E

¯ → F with S = Φbφ follows. Given v = φ(u), we have

|Φb(v)| = |S(u)| = S(|u|) = Φb(φ(|u|)) = Φb(|v|),

and the operator Φb is thus seen to be a lattice homomorphism. The uniqueness of Φb follows
from the surjectivity of φ.

(2): If u ∈ E¯ then u = φ(v) for some v ∈ E ⊗ E. According to 1.2 (3) we can find
x0, y0 ∈ E such that, for every ε > 0, there are x′1, . . . , x

′
n, y

′
1, . . . , y

′
n ∈ E with

∣∣∣∣∣v −
n∑

i=1

x′i ⊗ y′i

∣∣∣∣∣ 6 εx0 ¯ y0.

Now, we only need to apply the lattice homomorphism φ to the last inequality and to put
e0= φ(x0) ∨ φ(y0), xi= φ(x′i), yi= φ(y′i) (i= 1, . . . , n).

(3): Take a universally complete vector lattice G whose base is isomorphic to the base of
E. (Recall that a vector lattice is said to be universally complete if it is Dedekind complete
and every nonempty set of pairwise disjoint positive elements has a supremum.) Then there is
a lattice isomorphism ι from E onto an order dense sublattice ι(E) in G. Fix a multiplicative
structure in G that is uniquely determined by a choice of a weak order unit in G and providing
G with the structure of a semiprime f -algebra. Define the symmetric lattice bimorphism
b : E × E → G by b(x, y) := ι(x)ι(y). According to (1) there exists a lattice homomorphism
S : E¯ → G for which b = S¯. If x ¯ y = 0 then 0 = b(x, y) = ι(x)ι(y), thus x ⊥ y. The
converse was mentioned above.

(4): For 0 < u ∈ E¯ one can choose 0 < v ∈ E ⊗ E with u = φ(v). By 1.6 there exists
e0 ∈ E such that 0 < e0 ⊗ e0 6 v. If e := φ(e0) then 0 6 e ⊗ e 6 u. In addition, 0 < e ¯ e,
since assuming 0 = e¯ e we arrive at the contradictory equality e = 0 by virtue of (3).
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The uniqueness (up to isomorphism) was demonstrated in [13, Theorem 4] as follows.
Assume that for some vector lattice E} and lattice bimorphism } : E × E → E} the pair
(E},}) obeys the conditions (1)–(2). Then there are lattice homomorphisms Φ : E¯ → E}

and Ψ : E} → E¯ such that Φ¯ = } and Ψ} = ¯. It follows that Ψ ◦Φ(x¯ y) = x¯ y and
thus the set {x ¯ y : x, y ∈ E} is contained in U := {u ∈ E¯ : Ψ ◦ Φ(u) = u}. At the same
time U serves as a relatively uniformly closed sublattice in E¯. Therefore, by virtue of 2.1 (2),
U = E¯ and Ψ ◦ Φ = IE¯ . In a similar way Φ ◦ Ψ = IE} . Thereby Φ and Ψ are reciprocal
lattice homomorphisms implementing an isomorphism of vector lattices E¯ and E}. B

2.2. The vector lattice E¯ uniquely (up to lattice isomorphism) determined by an arbitrary
vector lattice E is called the square of E. The symmetric lattice bimorphism¯ : E×E → E¯ is
called the canonical bimorphism. By definition the vector lattice E¯ serves as a homomorphic
image of E ⊗ E. As was mentioned above the construction of E¯ was first introduced in
[13] where two more equivalent approaches to the notion of the square of a vector lattice
are presented. Noteworthy is also the forthcoming paper [3] providing one more way to gain
insight into the square of a vector lattice.

2.3. Let b : E × E → F and Φ : E¯ → F be respectively a symmetric bimorphism and
a lattice homomorphism with b = Φ¯. Then Φ is injective if and only if b is positively definite.

C Assume that b is positively definite and Φ(u) = 0 for some 0 < u ∈ E¯. Using 2.1 (4)
choose 0 < e ∈ E+ with e ¯ e 6 u. Then we arrive at the relation 0 6 b(e, e) = Φ(e ¯ e) 6
Φ(u) = 0, which contradicts to the positive definiteness of b. Conversely, if Φ is injective and
b(e, e) = 0 then Φ(e¯ e) = 0, whence e¯ e = 0 and, by virtue of 2.1 (3), we obtain e = 0. B

2.4. If T : E → F is a lattice homomorphism then there is a unique lattice homomorphism
T¯ : E¯ → F¯ such that T¯(x¯ y) = Tx¯ Ty (x, y ∈ E).

C Given a lattice homomorphism T : E → F , put b(x, y) := Tx ¯ Ty (x, y ∈ E).
Then b is a symmetric lattice bimorphism from E × E into F ¯. By 2.1 (1) there is a lattice
homomorphism S : E¯ → F¯ with b = S¯. Clearly, T¯ := S is the desired operator. B

2.5. If E is a sublattice of a lattice ordered algebra A then it is natural to expect that the
canonical bimorphism ¯ can be expressed in terms of the algebra multiplication. This can be
done in case of a semiprime f -algebra A, see [13, Theorem 8].

Let A be a semiprime f -algebra with a multiplication · and E be a sublattice of A. Then
there exists sublattice F ⊂ A and an isomorphism ι from E¯ onto F such that ι(x¯y) = x ·y
for all x, y ∈ E. If, in addition, E is relatively uniformly complete then F = E · E and thus
E · E is a vector lattice isomorphic to E¯.

C The first part is immediate from 2.1 (1) and 2.3, since the multiplication in a semiprime
f -algebra is a positively definite symmetric lattice bimorphism. The second part follows from
1.8. B

2.6. If a vector lattice E is relatively uniformly complete then E¯ = E ¯ E := {x ¯ y :
x, y ∈ E}.
C In the same way as in 2.1 (3) E can be taken as being a sublattice of the semiprime

f -algebra A := C∞(Q) for a suitable extremally disconnected compact space Q. Then by
Proposition 2.5 E¯ = ι−1(E · E) = E ¯ E. B

Note that though we have for convenience employed the universal completion in this
section, the results are constructively valid in ZF set theory. However, our results in the
sections 4 and 5 below of course do involve by necessity some form of the Axiom of Choice.

2.7. If E0 is a sublattice in E and } is the canonical bimorphism of E0 then there exists
an injective lattice homomorphism h from E¯0 into E¯ such that h(x } y) = x ¯ y for all
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x, y ∈ E0. Therefore, E¯0 and } can be considered respectively as a sublattice in E¯ and the
restriction of ¯ to E0 ×E0. If E0 is a majorizing (an order dense) sublattice in E then E¯0 is
a majorizing (an order dense) sublattice in E¯.

C To prove the first assertion we only need to apply 2.1 (1) and 2.3 to the bimorphism
(x, y) 7→ ι(x) ¯ ι(y) (x, y ∈ E0), where ι is the inclusion map from E0 into E. The second
assertion follows from 2.1 (2, 4). B

2.8. If F serves as a homomorphic image of a vector lattice E and F is relatively uniformly
complete then F¯ is a homomorphic image of a vector lattice E¯.

C Let T : E → F and T¯ : E¯ → F¯ be the same as in 2.4 and T (E) = F . It suffices to
observe that, by virtue 2.6, F¯ = F ¯ F = T¯(E ¯ E) ⊂ T¯(E¯). B

3. Representation of bilinear orthoregular operators

In this section we show that all orthoregular (orthosymmetric order bounded) bilinear
operators from E×E to the relatively uniformly complete vector lattice G can be represented
as compositions of regular (order bounded) linear operators from E¯ to G with the canonical
bimorphism. This universal property of the square of a vector lattice is similar to that
of Fremlin’s tensor product. A general form of the classical Cauchy–Bunyakowski–Schwarz
inequality is also proved.

3.1. Theorem. Let E and G be vector lattices with G relatively uniformly complete.
Then for every bilinear orthoregular operator b : E × E → G there exists a unique linear
regular operator Φb : E

¯ → G such that

b(x, y) = Φb(x¯ y) (x, y ∈ E).

The correspondence b 7→ Φb is an isomorphism of the ordered vector spaces BLor(E,G) and
Lr(E

¯, G).

C Take an orthosymmetric positive bilinear operator b : E×E → G. By virtue of 1.4 there
exists a unique linear positive operator T : E ⊗ E → G for which T⊗ = b. Having chosen a
linear operator Φb := Φ : F → G with T = Φ ◦ φ, we observe that the diagram

E¯

E ⊗ E

??

φ

ÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
Ä

E × E

E¯

¯

ÂÂ?
??

??
??

??
??

?
E × E

E ⊗ E

⊗

²²

G
Φ //_______

T

66llllllllllllllllllllllllll

b

))SS
SSS

SSS
SSS

SSS
SSS

SSS
SSS

SSS

is commutative. In particular, b = Φ◦¯. If f ∈ F+ then f = φ(u) for some 0 6 u ∈ E⊗E, since
φ is an onto mapping. Thus Φ(f) = Tu > 0 and Φ is positive. Uniqueness of Φ follows from the
relation Φ ◦ φ = T . Now it is clear that to prove the existence of Φ with required properties
it suffices to establish the inclusion ker(φ) ⊂ ker(T ). Since φ is a lattice homomorphism,
u ∈ ker(φ) if and only if |u| ∈ ker(φ), so that we can restrict ourselves to the case of positive
u ∈ E ⊗ E. If 0 6 u /∈ ker(T ) then, in view of 1.6, one can choose 0 < e ∈ E with e⊗ e 6 u.
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It follows 0 = φ(u) > φ(e⊗ e) = e¯ e, which contradicts to positive definiteness of ¯. Thus,
ker(φ) ⊂ ker(T ) as required.

Suppose now that b is an orthoregular bilinear operator. By definition b = b1 − b2 for
some positive orthosymmetric bilinear operators b1, b2 : E × E → G. According to what has
been just proved there exists a pair of positive linear operators Φ1,Φ2 ∈ Lr(F,G) such that
bk = Φk¯ (k := 1, 2). For Φ := Φ1 − Φ2 we have Φ ∈ Lr(F,G) and b = Φ¯. The uniqueness
of Φ is seen from the representation Φ ◦φ = T1−T2 where T1, T2 ∈ Lr(E⊗E,G) are positive
operators uniquely defined by Tk⊗ = bk (k := 1, 2). B

By virtue of 2.4 Theorem 3.1 generalizes Theorem 1 from [12] and Lemma 4 from [11].
Consider some more results that can be derived from the above theorem.

3.2. If G is an order complete vector lattice then BLor(E,G) is also an order complete
vector lattice. Moreover, every regular orthosymmetric bilinear operator b is orthoregular and
the following representations hold:

|b| = |Φb|¯, b+ = Φ+
b ¯, b− = Φ−b ¯ .

C By virtue of Theorem 3.1, the ordered vector spaces BLor(E,G) and Lr(E
¯, G) are

isomorphic. Therefore, it suffices to apply the Riesz–Kantorovich Theorem and observe that
a linear and order isomorphism preserves lattice operations whenever they exist. B

3.3. A bilinear operator b : E × F → G is said to be of order bounded variation if for all
0 6 x ∈ E and 0 6 y ∈ F the set

{ n∑

k=1

m∑

l=1

b(xk, yl) : 0 6 xk ∈ E (1 6 k 6 n ∈ N),

0 6 yl ∈ E (1 6 l 6 m ∈ N), x =
n∑

k=1

xk, y =
m∑

l=1

yl

}

is order bounded inG. The set of all bilinear operators b : E×F → G that are of order bounded
variations is denoted by BLbv(E,F ;G) and forms an ordered vector space with the positive
cone BL+(E,F ;G), since every positive bilinear operator is of order bounded variation. It was
proved in [14, Theorem 3.2] that if G is relatively uniformly complete then the correspondence
T 7→ T⊗ is a linear and order isomorphism from the space of order bounded linear operators
L∼(E ⊗ F,G) onto BLbv(E,F ;G). A similar result is true for orthosymmetric operators.
But more can be said in this case: as was observed in [13, Theorem 9] any order bounded
orthosymmetric bilinear operator is of order bounded variation; in symbols, BLbv(E,E;G) ⊃
BL∼o (E;G) where BL∼o (E;G) denotes the set of all order bounded orthosymmetric bilinear
operators from E × E to G.

3.4. Theorem. Let E and G be vector lattices with G relatively uniformly complete.
Then for every order bounded orthosymmetric bilinear operator b : E × E → G there exists
a unique order bounded linear operator Φb : E

¯ → G such that

b(x, y) = Φb(x¯ y) (x, y ∈ E).

The correspondence b 7→ Φb is an isomorphism between ordered vector spaces BL∼o (E;G) and
L∼(E¯, G).

C Our arguments are similar to [14, Theorem 3.2]. Denote by Ĝ the Dedekind completion
of G. Take any b ∈ BL∼o (E,G) viewed as an operator with the target space Ĝ. By 3.1 and 3.3
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there is an operator Φb ∈ L∼(E¯, Ĝ) with b = Φb¯. It follows that Φb(U) is contained in G if
U denotes the linear hull of {x¯ y : x, y ∈ E}. Thus, Φb(E¯) is also contained in G, since an
order bounded operator Φb preserves relative uniform convergence, U is relatively uniformly
dense in E¯ by 2.1, and G is relatively uniformly closed in Ĝ. Evidently, the correspondence
b 7→ Φb is an order preserving linear bijection. B

3.5. Below we need the following result established in [28]. Let G be a universally complete
vector lattice and we fix a structure of a semiprime f -algebra in it that is uniquely determined
by a choice of an order unit.

For any lattice bimorphism b : E×F → G there exist lattice homomorphisms S : E → G
and T : F → G such that

b(x, y) = S(x)T (y) (x ∈ E, y ∈ F ).

Moreover, b is symmetric if and only S = αT for some positive orthomorphism α in G.

3.6. Theorem. Let E and G be vector lattices and b : E×E → G be a symmetric lattice
bimorphism. Then there exist a vector lattice F , a lattice homomorphism S : E → F , and an
isomorphic embedding h : F ¯ F → G such that S(E) = F and the representation hold:

b(x, y) = h(S(x)¯ S(y)) (x, y ∈ E).

C Immediate from 3.5 and 2.4. B

3.7. In [12] the following general form of the classical Cauchy–Bunyakowski–Schwarz
inequality was proved: ifX is a real vector space and b : X×X → F is a positively semidefinite
symmetric bilinear operator with values in an almost f -algebra F then

b(x, y)b(x, y) 6 b(x, x)b(y, y) (x, y ∈ X).

In the case of a semiprime f -algebra F this fact was established earlier in [21] and it was
shown in [4] that the semiprimeness assumption can be omitted. Using Theorem 3.1 we point
to another improvement announced in [25], replacing the almost f -algebra multiplication by
an arbitrary positive orthosymmetric bilinear operator. A review of different generalizations
and refinements of the classical Cauchy–Bunyakowski–Schwarz inequality one can find in [15].

3.8. Theorem. LetX be a real vector space, E be a vector lattice, and 〈·, ·〉 be a positively
semidefinite symmetric bilinear operator from X ×X to E. Let F be another vector lattice
and ◦ : E × E → F be a positive orthosymmetric bilinear operator. Then

〈x, y〉 ◦ 〈x, y〉 6 〈x, x〉 ◦ 〈y, y〉 (x, y ∈ X).

C Fix any two elements x, y ∈ X. Assume that the subspace X0 ⊂ X spanned by {x, y}
is two-dimensional, since otherwise there is nothing to prove. Put u := 〈x, x〉, v := 〈y, y〉,
w := 〈x, y〉, and e := u+ v + |w|. Let E0 be an order ideal in E generated by e. Without loss
of generality, we may assume that E0 is a uniformly closed sublattice of the f -algebra C(Q)
for some compact Hausdorff space Q and e denotes the function on Q which is identically
equal to 1. If b denotes the restriction of 〈· , ·〉 onto E0×E0 then for every q ∈ Q the relation
bq(x

′, y′) := b(x′, y′)(q) defines correctly a positively semidefinite symmetric bilinear form on
X0 × X0. By virtue of the classical Cauchy–Bunyakowski–Schwarz inequality bq(x

′, y′)2 6
bq(x

′, x′)bq(y
′, y′) (x′, y′ ∈ E0). It follows that b(x, y)b(x, y) 6 b(x, x)b(y, y).

Let juxtaposition mean the natural multiplication in the f -algebra C(Q), and denote by d
the restriction of (e1, e2) 7→ e1◦e2 onto E0×E0. By Theorem 3.1 d = S¯ for a suitable positive
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linear operator S : E¯0 → F̂ where F̂ is a Dedekind completion of F . By virtue of 2.4 there
exist a sublattice G ⊂ C(Q) and an isomorphism ι from E¯ onto G such that ι(e1¯e2) = e1e2.
As is easily seen, the operator S ′ := S◦ι−1 is linear, positive, and e1◦e2 = d(e1, e2) = S′(e1e2).
Applying S ′ to the inequality b(x, y)b(x, y) 6 b(x, x)b(y, y) and taking the previous identity
into consideration we arrive at b(x, y) ◦ b(x, y) 6 b(x, x) ◦ b(y, y), which is equivalent to the
required. B

4. Extension of orthoregular bilinear operators

A positive bilinear operator defined on the Cartesian product of majorizing sublattices
admits a positive bilinear extension to the Cartesian product of the ambient vector lattices
[18, 22, 26]. If the given operator is orthosymmetric then a question arises as to whether
there is a positive orthosymmetric bilinear extension. A positive answer can be derived using
Theorem 3.1 and Proposition 2.7, see [25].

4.1. Theorem. Let E0 be a majorizing sublattice in a vector lattice E and G be an order
complete vector lattice. Then every positive orthosymmetric bilinear operator b0 : E0×E0 →
G admits a positive orthosymmetric bilinear extension b : E × E → G.

C Denote by ι the inclusion map from E0 into E. According to 2.7 there is an isomorphic
embedding ι¯ of E¯0 into E¯ such that the canonical bimorphism of E0 is the restriction of
the canonical bimorphism ¯ of E, i. e. ¯(ι × ι) = ι¯¯. Moreover, ι¯(E¯0 ) is a majorizing
sublettice in E¯. By virtue of Theorem 3.1 there is a linear positive operator Φ0 : E¯0 → G
with b0 = Φ0¯. Choose any positive linear extension Φ : E¯ → G of Φ0 and put b := Φ¯.
Then the operator b : E × E → G is bilinear, positive, and orthosymmetric and the diagram

G

E × E

77
b

o
o
o
o
o
o
o

E0 × E0

G

b0

''OO
OO

OO
OO

OO
OO

E0 × E0

E × E

ι×ι

²²

G

E¯

gg
Φ

O
O

O
O

O
O

O

E¯0

G

Φ0

wwooo
oo
oo
oo
oo
oo
o
E¯0

E¯

ι¯

²²

¯
//

¯ //

is commutative. In particular, b(ι × ι) = Φ ¯ (ι × ι) = Φι¯¯ = Φ0¯ = b0 and b is thus an
extension of b0. B

4.2. To prove our next extension theorem we need the following result: If E0 is a majorizing
vector sublattice of a vector lattice E and G is an order complete vector lattice then there
exists an order continuous lattice homomorphism ε′ from Lr(E0, G) to Lr(E,G) such that
%′◦ε′ is the identical mapping on Lr(E0, G), where ρ′ : Lr(E,G)→ Lr(E0, G) is the restriction
operator S 7→ S|E0 .

This fact stating the existence of an order continuous “simultaneous extension” of linear
regular operators from a majorizing sublattice to the ambient vector lattice was proved in [22,
Theorem 3], see also [23, Theorem 3.4.11].

4.3. Theorem. Let E0, E, and G be the same as in 4.1. Then there exists a “simultaneous
extension” of the orthoregular bilinear operators from E0 to E, i. e. there exists an order
continuous lattice homomorphism ε : BLor(E0, G) → BLor(E,G) such that ρ ◦ ε is the
identity mapping onBLor(E0, G), where ρ : BLor(E,G)→ BLor(E0, G) denotes the restriction
operator b 7→ b|E0×E0 .
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C According to 4.2 there exists a “simultaneous extension” ε′ : Lr(E0, G) → Lr(E,G).
Consider two operators ψ0 : S0 7→ S0¯ (S0 ∈ Lr(E0, G)) and ψ : S 7→ S¯ (S ∈ Lr(E,G)). By
Theorem 3.1 these operators are linear and lattice isomorphisms. Moreover, the right square
of the diagram

BLor(E0, G) BLor(E,G)ε
//____

Lr(E0, G)

BLor(E0, G)

OO

ψ−1
0

Lr(E0, G) Lr(E,G)
ε′ // Lr(E,G)

BLor(E,G)

ψ

²²
BLor(E,G) BLor(E0, G)ρ

//

Lr(E,G)

BLor(E,G)

Lr(E,G)

BLor(E,G)

Lr(E,G) Lr(E0, G)
ρ′ // Lr(E0, G)

BLor(E0, G)

ψ0

²²

is commutative. The operator ε := ψ ◦ ε′ ◦ ψ−10 makes the whole diagram commutative. In
particular, ρ ◦ ε = ρ ◦ ψ ◦ ε′ ◦ ψ−10 = ψ0 ◦ ρ′ ◦ ε′ ◦ ψ−10 = ψ0 ◦ id ◦ ψ−10 = Id, where id and Id
are identity mappings on Lr(E0, G) and BLor(E0, G), respectively. B

4.4. Theorem. If E0 is a majorizing sublattice of a vector lattice E and G is an order
complete vector lattice then every symmetric lattice bimorphism b0 : E0 ×E0 → G admits a
bilinear extension b : E × E → G which is a symmetric lattice bimorphism.

C Let S0 : E
¯

0 → G be a positive linear operator with b0 = S0¯, see Theorem 3.1. Denote
by ε+(b0) and ε+(S0) the set of all positive orthosymmetric bilinear extensions of b0 to E×E
and the set of all positive linear extensions of S0 to E¯, respectively. Using 2.1 (2) it is easy
to verify that the correspondence S 7→ S¯ represents an affine bijection from ε+(S0) onto
ε+(b0). Clearly, this bijection preserves extreme points. But it is known (see [10] and [23,
3.3.9 (3)]) that the extreme points of ε+(S0) serves as the lattice homomorphisms, thus the
extreme points of ε+(b0) are symmetric lattice bimorphisms. B

5. Disjointness preserving operators

In this section we prove that an order bounded disjointness preserving orthosymmetric
bilinear operator can be decomposed into a strongly disjoint sum of operators admitting
weight-shift-weight representation.

5.1. Let E, F , and G be vector lattices. A bilinear operator b : E × F → G is said to be
disjointness preserving if

x1 ⊥ x2 =⇒ b(x1, y) ⊥ b(x2, y),
y1 ⊥ y2 =⇒ b(x, y1) ⊥ b(x, y2)

for arbitrary x ∈ E and y ∈ F . If E = F and b is orthosymmetric then b is symmetric (see
1.5) and any of these conditions implies the other.

Suppose that a bilinear operator b : E × F → G is order bounded and disjointness
preserving. Then b has the positive part b+, the negative part b−, and the modulus |b|, which
are lattice bimorphisms. Moreover,

b+(x, y) = b(x, y)+, b−(x, y) = b(x, y)− (0 6 x ∈ E, 0 6 y ∈ F );

|b|(x, y) = |b(|x|, |y|)| (x ∈ E, y ∈ F ).
In particular, b is regular. Thus, any disjointness preserving bilinear operator is orthoregular
if and only if it is order bounded and orthosymmetric, see [27, Theorem 3.4] and [7, Theorems
4 and 5].
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5.2. Let b : E × E → G be an order bounded disjointness preserving orthosymmetric
bilinear operator. If a regular linear operator Φ : E¯ → G satisfies the condition b = Φ¯,
then Φ is disjointness preserving. Thus, the correspondence Φ 7→ Φ¯ is a bijection between
the set of all order bounded disjointness preserving bilinear operators from E × E to G and
the set of all order bounded disjointness preserving linear operators from E¯ to G.

C Indeed, according to 5.1, b+ and b− are lattice bimorphisms, and by Theorem 3.1
they admit the representations b+ = S1¯ and b− = S2¯ for some lattice homomorphisms
S1, S2 : E

¯ → G. If

u :=
n∑

k=1

xk ¯ yk, e :=
n∑

k=1

|xk|+
n∑

k=1

|yk|,

then |u| 6 e¯ e; therefore, |S1(u)| = S1(|u|) 6 S1(e¯ e) = b+(e, e) = (b(e, e))+. Analogously,
|S2(u)| 6 b−(e, e) 6 (b(e, e))−. Thus, S1(u) ⊥ S2(u) for all u ∈ U where U is the linear hull
of the set {x ¯ y : x, y ∈ E}. Using 2.1 (2), one can easily observe that the last statement is
true for all u ∈ E¯, i. e. the operator S1 and S2 are strongly disjoint. Put Φ:= S1 − S2 and
observe that Φ preserves disjointness by virtue of strong disjointness of S1 and S2. It is also
obvious that b = Φ¯, Φ+ = S1, Φ− = S2 and |b| = (S1 + S2)¯. B

5.3. Bilinear operators b and d from E×F toG are called strongly disjoint if im(b) ⊥ im(d).
It can be easily shown that bilinear operators b and d are strongly disjoint if and only if
b(x, y) ⊥ d(x, y) for all x ∈ E and y ∈ F .

Let (bξ)ξ∈Ξ be a family of bilinear operators from E × F to G. Say that an operator
b : E × F → G decomposes into the strongly disjoint sum of operators bξ

(
and write b =⊕

ξ∈Ξ bξ
)
, whenever the operators bξ are pairwise strongly disjoint and

b(x, y) = o-
∑

ξ∈Ξ

bξ(x, y) (x ∈ E, y ∈ F ).

It is easy to observe that the strongly disjoint sum of (bξ) is disjointness preserving if and
only if each its summand bξ is.

5.4. Order bounded disjointness preserving bilinear operators admit a nice analytical
representation, see [28]. Now we are going to specialize to the corresponding representation
results for orthosymmetric operators.

Let E and G be order-dense ideals of some universally complete vector lattices E and
G . In E and G we fix order-unities 1E and 1G and consider multiplications that make these
spaces f -algebras with unities 1E and 1G , respectively. We recall that orthomorphisms in E

and G are multiplication operators and we identify them with the corresponding multipliers.
For every f ∈ E , there exists a unique element g ∈ E such that fg = [f ]1E and [f ] = [g],
where [f ] stands for the band projection onto f⊥⊥. We denote such an element g by 1E /f
and put g/f = g(1E /f). The orthomorphism g 7→ g/f is also denoted by 1E /f .

Consider order dense ideals E ′ ⊂ E , G′ ⊂ G , and G′′ ⊂ G . Denote by G′ · G′′ the vector
sublattice in G generated by the set {g′g′′ : g′ ∈ G′, g′′ ∈ G′′} (and actually coinciding with
this set by 1.8).

If w : E → E′ and S : E′ → G′ are linear operators then w × w : E × E → E ′ × E′
and S • S : E′ × E′ → G′ · G′ denote the linear and bilinear operators defined by (x, y) 7→
(wx,wy) and (x, y) 7→ S(x)S(y), respectively. We say that a bilinear orthosymmetric operator
b : E × E → G admits a weight-shift-weight representation (WSW -representation for short)
if there exist order-dense ideals E ′ ⊂ E and G′ ⊂ G , orthomorphisms w : E → E ′ and
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W : G′ ·G′ → G, and a shift operator S : E ′ → G′ such that b =W ◦ (S • S) ◦ (w ×w), i. e.
the diagram

E′ × E′ G′ ·G′
S•S

//

E × E

E′ × E′

w×w

²²

E × E G
b // G

G′ ·G′

OO

W

is commutative.
A shift operator from E ′ to G′ is a restriction to E ′ of a positive linear map Ŝ : Ê → G

satisfying the properties: 1) Ê is an order dense ideal in E containing E ′ and 1E ; 2) Ŝ sends
any component of 1E into a component of 1G ; 3) Ŝ is disjointness preserving; 4) Ŝ(1E )

⊥⊥ = G .
The operators W , S, and w are respectively called the outer weight, shift, and inner weight

of the representation W ◦ (S • S) ◦ (w × w).
Now we can deduce our representation result for order bounded disjointness preserving

bilinear operators using the corresponding results for linear operators due to A. E. Gutman,
see [19, 20, 23].

5.5. Theorem. Let b : E × E → G be a disjointness preserving orthoregular bilinear
operator. Then there exist a partition of unity (ρξ)ξ∈Ξ in the Boolean algebra P(F ) and
a family (eξ)ξ∈Ξ in E+ such that for each ξ ∈ Ξ the composite ρξ ◦ b admits a WSW -
representation (with an inner weight 1E /eξ)

ρξ ◦ b = ρξW ◦ (S • S) ◦ (1E /eξ × 1E /eξ) (ξ ∈ Ξ),

where S is a shift operator and the outer weight W : G → G is the orthomorphism of
multiplication by o-

∑
ξ∈Ξ ρξb(eξ, eξ). Thus, the operator b decomposes into the strongly

disjoint sum of the operators ρξ ◦ b admitting WSW -representations with the same shift
operator.

C Let b : E×E → G be a disjointness preserving orthoregular bilinear operator. Then |b|
is a lattice bimorphism. By virtue of 3.5 |b|(x, y) = T (x)T (y), where T : E → F is a lattice
homomorphism. According to Theorem 5.1 there is a band projection π in F such that π|b| =
b+ and π⊥|b| = b−. Apply the representation result from [23, Theorem 5.4.5] which implies
the existence of a partition of unity (ρξ)ξ∈Ξ in the algebra P(G) and a family eξ of positive
elements in E such that, for each ξ ∈ Ξ, the composite ρξ ◦ T admits a WSW -representation
ρξ ◦ T = W0 ◦ ρξS ◦ (1E /eξ), where S : E ′ → G′ is the shift of T and W : F → F is
the orthomorphism of multiplication by o-

∑
ξ∈Ξ ρξTeξ. Taking into consideration disjointness

of ρξ and ρη with ξ 6= η, we deduce

ρξ|b|(x, y) = ρξT (x)ρξT (y) =W 2
0 ◦ ρξS(x/eξ)S(y/eξ) (x, y ∈ E).

Denote W := o-
∑

ξ πρξW
2
0 −π⊥ρξW 2

0 and observe that ρξb = ρξW ◦ (S •S)◦ (1E /eξ×1E /eξ),
from which the desired assertion follows. B

5.6. Let P and Q be extremally disconnected Hausdorff compact topological spaces, E
and G be order-dense ideals in the universally complete vector lattices E := C∞(P ) and
G := C∞(Q), respectively. Denote by C0(Q,P ) the totality of all continuous functions σ :
Q0 := dom(σ)→ P defined on various clopen subsets Q0 ⊂ Q. Given arbitrary σ ∈ C0(Q,P )
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and e ∈ C∞(P ), the function σ∗e : Q→ R is defined as follows:

(σ∗e)(q) :=

{
e
(
σ(q)

)
, if q ∈ dom(σ),

0, if q ∈ Q\ dom(σ).

Obviously, the function σ∗e is continuous but, in general, is not an element of C∞(Q), since it
can assume infinite values on a set with non-empty interior Q∞. If some W ∈ C∞(Q) vanishes
on Q∞ then we assume that Wσ∗x ∈ C∞(Q).

5.7. Theorem. Let E and G be order dense ideals in C∞(P ) and C∞(Q), respectively,
and let b : E×E → G be a disjointness preserving orthoregular bilinear operator. Then there
exists a continuous mapping σ ∈ C0(Q,P ), a family of positive functions (wξ)ξ∈Ξ in C∞(P ),
and a family of pairwise disjoint functions (Wξ)ξ∈Ξ in C∞(Q) such that 1/wξ ∈ E for all
ξ ∈ Ξ and

b(x, y) = o-
∑

ξ∈Ξ

Wξσ
∗(wξx)σ

∗(wξy) (x, y ∈ E).

C We need only to apply 5.6 and to use the following result from [23, Theorem 5.4.5]:
A linear operator T : E → G admits a WSW -representation if and only if there exist functions
σ ∈ C0(Q,P ), w ∈ C∞(P ), and W ∈ C∞(Q) such that σ∗(we) ∈ C∞(Q) and Te =Wσ∗(we)
for all e ∈ E. B

5.8. Theorem 5.7 gives an analytical representations of order bounded disjointness
preserving bilinear operators with the help of the operations of continuous change of variable
and pointwise multiplication by a real-valued function. This type of analytical representation,
often called multiplicative representation, stems from the work [1] by Yu. A. Abramovich.
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